
OMNISCIA

info@omniscia.io

Online report: gravita-protocol

SMART CONTRACT

AUDIT REPORT

May 17, 2023

Gravita

omniscia.ioomniscia.io

mailto:info@omniscia.io
https://omniscia.io/reports/gravita-protocol-core-protocol-642b98414a1a960014621fc9/

Commit Hash Date Revision Hash

5e45123d16 May 17th 2023 1f8d3c80e7

We were tasked with performing an audit of the Gravita Protocol codebase and in particular their core
Liquity-based borrowing protocol.

Over the course of the audit, we identified multiple significant vulnerabilities that arise by the dynamic-
collateral features introduced in the new Gravita Protocol implementation.

We advise the Gravita Protocol team to closely evaluate all minor-and-above findings identified in the report
and promptly remediate them as well as consider all optimizational exhibits identified in the report.

The Gravita Protocol team iterated through all findings within the report and provided us with a revised
commit hash to evaluate all exhibits on.

We evaluated all alleviations performed by Gravita Protocol and identified that certain exhibits had not been
adequately dealt with.

We followed up with the Gravita Protocol team and have concluded that they wish to acknowledge them
given that the exhibits that have not been directly remediated do not pose a threat to the protocol.

As such, we consider all outputs of the audit report properly consumed by the Gravita Finance team.

Core Protocol Security Audit

Audit Revisions

Audit Overview

Post-Audit Conclusion

Files in Scope Repository Commit(s)

ActivePool.sol (APL) Gravita-SmartContracts bfa97cb37d,
5e45123d16

AdminContract.sol (ACT) Gravita-SmartContracts bfa97cb37d,
5e45123d16

BaseMath.sol (BMH) Gravita-SmartContracts bfa97cb37d,
5e45123d16

BorrowerOperations.sol (BOS) Gravita-SmartContracts bfa97cb37d,
5e45123d16

CollSurplusPool.sol (CSP) Gravita-SmartContracts bfa97cb37d,
5e45123d16

DebtToken.sol (DTN) Gravita-SmartContracts bfa97cb37d,
5e45123d16

DefaultPool.sol (DPL) Gravita-SmartContracts bfa97cb37d,
5e45123d16

ERC20Permit.sol (ERC) Gravita-SmartContracts bfa97cb37d,
5e45123d16

ERC20Decimals.sol (ERD) Gravita-SmartContracts bfa97cb37d,
5e45123d16

FeeCollector.sol (FCR) Gravita-SmartContracts bfa97cb37d,
5e45123d16

GasPool.sol (GPL) Gravita-SmartContracts bfa97cb37d,
5e45123d16

GravitaBase.sol (GBE) Gravita-SmartContracts bfa97cb37d,
5e45123d16

GravitaMath.sol (GMH) Gravita-SmartContracts bfa97cb37d,
5e45123d16

Contracts Assessed

Files in Scope Repository Commit(s)

GravitaSafeMath128.sol (GSM) Gravita-SmartContracts bfa97cb37d,
5e45123d16

PoolBase.sol (PBE) Gravita-SmartContracts bfa97cb37d,
5e45123d16

PriceFeed.sol (PFD) Gravita-SmartContracts bfa97cb37d,
5e45123d16

ReentrancyGuardUpgradeable.sol (RGU) Gravita-SmartContracts bfa97cb37d,
5e45123d16

SafeMath.sol (SMH) Gravita-SmartContracts bfa97cb37d,
5e45123d16

SortedVessels.sol (SVS) Gravita-SmartContracts bfa97cb37d,
5e45123d16

StabilityPool.sol (SPL) Gravita-SmartContracts bfa97cb37d,
5e45123d16

SafetyTransfer.sol (STR) Gravita-SmartContracts bfa97cb37d,
5e45123d16

Timelock.sol (TKC) Gravita-SmartContracts bfa97cb37d,
5e45123d16

VesselManager.sol (VMR) Gravita-SmartContracts bfa97cb37d,
5e45123d16

VesselManagerOperations.sol (VMO) Gravita-SmartContracts bfa97cb37d,
5e45123d16

Severity Identified Alleviated Partially Alleviated Acknowledged

3 3 0 0

73 60 10 3

16 4 0 12

4 4 0 0

3 3 0 0

During the audit, we filtered and validated a total of 22 findings utilizing static analysis tools as well as
identified a total of 77 findings during the manual review of the codebase. We strongly recommend that
any minor severity or higher findings are dealt with promptly prior to the project's launch as they can
introduce potential misbehaviours of the system as well as exploits.

Audit Synopsis

Compilation

The project utilizes hardhat as its development pipeline tool, containing an array of tests and scripts coded
in JavaScript.

To compile the project, the compile command needs to be issued via the npx CLI tool to hardhat :

The hardhat tool automatically selects Solidity version 0.8.17 based on the version specified within the
hardhat.config.js file.

The project contains discrepancies with regards to the Solidity version used as the pragma statements of the
contracts are open-ended (^0.8.10).

We advise them to be locked to 0.8.17 (=0.8.17), the same version utilized for our static analysis as well
as optimizational review of the codebase.

During compilation with the hardhat pipeline, no errors were identified that relate to the syntax or
bytecode size of the contracts.

npx hardhat compile

BASH

Static Analysis

The execution of our static analysis toolkit identified 457 potential issues within the codebase of which 370
were ruled out to be false positives or negligible findings.

The remaining 87 issues were validated and grouped and formalized into the 22 exhibits that follow:

ID Severity Addressed Title

APL-01S Inexistent Sanitization of Input Addresses

ACT-01S Data Location Optimization

ACT-02S Illegible Numeric Value Representations

ACT-03S Inexistent Visibility Specifier

ACT-04S Inexistent Sanitization of Input Addresses

BOS-01S Inexistent Sanitization of Input Addresses

CSP-01S Inexistent Visibility Specifier

CSP-02S Inexistent Sanitization of Input Addresses

DTN-01S Inexistent Event Emissions

DTN-02S Inexistent Sanitization of Input Addresses

DPL-01S Inexistent Sanitization of Input Addresses

FCR-01S Data Location Optimizations

FCR-02S Inexistent Sanitization of Input Addresses

https://omniscia.io/reports/gravita-protocol-core-protocol-642b98414a1a960014621fc9/static-analysis/ActivePool-APL#APL-01S
https://omniscia.io/reports/gravita-protocol-core-protocol-642b98414a1a960014621fc9/static-analysis/AdminContract-ACT#ACT-01S
https://omniscia.io/reports/gravita-protocol-core-protocol-642b98414a1a960014621fc9/static-analysis/AdminContract-ACT#ACT-02S
https://omniscia.io/reports/gravita-protocol-core-protocol-642b98414a1a960014621fc9/static-analysis/AdminContract-ACT#ACT-03S
https://omniscia.io/reports/gravita-protocol-core-protocol-642b98414a1a960014621fc9/static-analysis/AdminContract-ACT#ACT-04S
https://omniscia.io/reports/gravita-protocol-core-protocol-642b98414a1a960014621fc9/static-analysis/BorrowerOperations-BOS#BOS-01S
https://omniscia.io/reports/gravita-protocol-core-protocol-642b98414a1a960014621fc9/static-analysis/CollSurplusPool-CSP#CSP-01S
https://omniscia.io/reports/gravita-protocol-core-protocol-642b98414a1a960014621fc9/static-analysis/CollSurplusPool-CSP#CSP-02S
https://omniscia.io/reports/gravita-protocol-core-protocol-642b98414a1a960014621fc9/static-analysis/DebtToken-DTN#DTN-01S
https://omniscia.io/reports/gravita-protocol-core-protocol-642b98414a1a960014621fc9/static-analysis/DebtToken-DTN#DTN-02S
https://omniscia.io/reports/gravita-protocol-core-protocol-642b98414a1a960014621fc9/static-analysis/DefaultPool-DPL#DPL-01S
https://omniscia.io/reports/gravita-protocol-core-protocol-642b98414a1a960014621fc9/static-analysis/FeeCollector-FCR#FCR-01S
https://omniscia.io/reports/gravita-protocol-core-protocol-642b98414a1a960014621fc9/static-analysis/FeeCollector-FCR#FCR-02S

ID Severity Addressed Title

FCR-03S Improper Invocations of EIP-20 transfer

GMH-01S Illegible Numeric Value Representation

PFD-01S Inexistent Sanitization of Input Addresses

SVS-01S Inexistent Visibility Specifier

SPL-01S Inexistent Visibility Specifier

SPL-02S Inexistent Sanitization of Input Addresses

VMR-01S Inexistent Sanitization of Input Addresses

VMO-01S Illegible Numeric Value Representations

VMO-02S Inexistent Sanitization of Input Addresses

https://omniscia.io/reports/gravita-protocol-core-protocol-642b98414a1a960014621fc9/static-analysis/FeeCollector-FCR#FCR-03S
https://omniscia.io/reports/gravita-protocol-core-protocol-642b98414a1a960014621fc9/static-analysis/GravitaMath-GMH#GMH-01S
https://omniscia.io/reports/gravita-protocol-core-protocol-642b98414a1a960014621fc9/static-analysis/PriceFeed-PFD#PFD-01S
https://omniscia.io/reports/gravita-protocol-core-protocol-642b98414a1a960014621fc9/static-analysis/SortedVessels-SVS#SVS-01S
https://omniscia.io/reports/gravita-protocol-core-protocol-642b98414a1a960014621fc9/static-analysis/StabilityPool-SPL#SPL-01S
https://omniscia.io/reports/gravita-protocol-core-protocol-642b98414a1a960014621fc9/static-analysis/StabilityPool-SPL#SPL-02S
https://omniscia.io/reports/gravita-protocol-core-protocol-642b98414a1a960014621fc9/static-analysis/VesselManager-VMR#VMR-01S
https://omniscia.io/reports/gravita-protocol-core-protocol-642b98414a1a960014621fc9/static-analysis/VesselManagerOperations-VMO#VMO-01S
https://omniscia.io/reports/gravita-protocol-core-protocol-642b98414a1a960014621fc9/static-analysis/VesselManagerOperations-VMO#VMO-02S

Manual Review

A thorough line-by-line review was conducted on the codebase to identify potential malfunctions and
vulnerabilities in Gravita Protocol's novel borrowing implementation.

As the project at hand implements a Liquity-based borrowing protocol backed by multiple collateral types,
intricate care was put into ensuring that the flow of funds within the system conforms to the
specifications and restrictions laid forth within the protocol's specification.

We validated that all state transitions of the system occur within sane criteria and that all rudimentary
formulas within the system execute as expected. We pinpointed several dynamic collateral-related
vulnerabilities within the system which could have had severe ramifications to its overall operation.

Additionally, the system was investigated for any other commonly present attack vectors such as re-entrancy
attacks, mathematical truncations, logical flaws and ERC / EIP standard inconsistencies. The documentation
of the project was satisfactory to the extent it need be.

A total of 77 findings were identified over the course of the manual review of which 17 findings concerned
the behaviour and security of the system. The non-security related findings, such as optimizations, are
included in the separate Code Style chapter.

The finding table below enumerates all these security / behavioural findings:

ID Severity Addressed Title

ACT-01M Improper Reset Functionality

ACT-02M Improper Permission of Collateral Activation

ACT-03M Improper Capability of Gas Compensation
Adjustment

ERC-01M Insecure EIP-2612 Implementation

ERC-02M Insecure Elliptic Curve Recovery Mechanism

GSM-01M Improper Application of Safe Arithmetics

https://eips.ethereum.org/
https://omniscia.io/reports/gravita-protocol-core-protocol-642b98414a1a960014621fc9/code-style
https://omniscia.io/reports/gravita-protocol-core-protocol-642b98414a1a960014621fc9/manual-review/AdminContract-ACT#ACT-01M
https://omniscia.io/reports/gravita-protocol-core-protocol-642b98414a1a960014621fc9/manual-review/AdminContract-ACT#ACT-02M
https://omniscia.io/reports/gravita-protocol-core-protocol-642b98414a1a960014621fc9/manual-review/AdminContract-ACT#ACT-03M
https://omniscia.io/reports/gravita-protocol-core-protocol-642b98414a1a960014621fc9/manual-review/ERC20Permit-ERC#ERC-01M
https://omniscia.io/reports/gravita-protocol-core-protocol-642b98414a1a960014621fc9/manual-review/ERC20Permit-ERC#ERC-02M
https://omniscia.io/reports/gravita-protocol-core-protocol-642b98414a1a960014621fc9/manual-review/GravitaSafeMath128-GSM#GSM-01M

ID Severity Addressed Title

PFD-01M Significant Centralization of Sensitive
Functionality

PFD-02M Incorrect Error Handling

PFD-03M Inexistent Initialization of Price

PFD-04M Incorrect Lido Staked ETH Value Assumption

PFD-05M Incorrect Lido Staked ETH Price Usage

SMH-01M Improper Application of Safe Arithmetics

STR-01M Incorrect Decimal Assumption

STR-02M Insecure Conversion of Amount

SVS-01M Insecure Data List Size Enforcement

SPL-01M Inexistent Normalization of Asset

TKC-01M Inexistent Prevention of Duplicate Invocations

https://omniscia.io/reports/gravita-protocol-core-protocol-642b98414a1a960014621fc9/manual-review/PriceFeed-PFD#PFD-01M
https://omniscia.io/reports/gravita-protocol-core-protocol-642b98414a1a960014621fc9/manual-review/PriceFeed-PFD#PFD-02M
https://omniscia.io/reports/gravita-protocol-core-protocol-642b98414a1a960014621fc9/manual-review/PriceFeed-PFD#PFD-03M
https://omniscia.io/reports/gravita-protocol-core-protocol-642b98414a1a960014621fc9/manual-review/PriceFeed-PFD#PFD-04M
https://omniscia.io/reports/gravita-protocol-core-protocol-642b98414a1a960014621fc9/manual-review/PriceFeed-PFD#PFD-05M
https://omniscia.io/reports/gravita-protocol-core-protocol-642b98414a1a960014621fc9/manual-review/SafeMath-SMH#SMH-01M
https://omniscia.io/reports/gravita-protocol-core-protocol-642b98414a1a960014621fc9/manual-review/SafetyTransfer-STR#STR-01M
https://omniscia.io/reports/gravita-protocol-core-protocol-642b98414a1a960014621fc9/manual-review/SafetyTransfer-STR#STR-02M
https://omniscia.io/reports/gravita-protocol-core-protocol-642b98414a1a960014621fc9/manual-review/SortedVessels-SVS#SVS-01M
https://omniscia.io/reports/gravita-protocol-core-protocol-642b98414a1a960014621fc9/manual-review/StabilityPool-SPL#SPL-01M
https://omniscia.io/reports/gravita-protocol-core-protocol-642b98414a1a960014621fc9/manual-review/Timelock-TKC#TKC-01M

Code Style

During the manual portion of the audit, we identified 60 optimizations that can be applied to the codebase
that will decrease the operational cost associated with the execution of a particular function and generally
ensure that the project complies with the latest best practices and standards in Solidity.

Additionally, this section of the audit contains any opinionated adjustments we believe the code should
make to make it more legible as well as truer to its purpose.

These optimizations are enumerated below:

ID Severity Addressed Title

APL-01C Inefficient Renunciation of Ownership

APL-02C Inexplicable Ownable Pattern

APL-03C Redundant Initialization Paradigm

ACT-01C Inefficient mapping Lookups

ACT-02C Inexistent Error Message

ACT-03C Loop Iterator Optimizations

ACT-04C Misleading Variable Name

BOS-01C Ineffectual Native Value Check

BOS-02C Redundant Native Value Check

BOS-03C Suboptimal Struct Declaration Styles

CSP-01C Inefficient Renunciation of Ownership

https://omniscia.io/reports/gravita-protocol-core-protocol-642b98414a1a960014621fc9/code-style/ActivePool-APL#APL-01C
https://omniscia.io/reports/gravita-protocol-core-protocol-642b98414a1a960014621fc9/code-style/ActivePool-APL#APL-02C
https://omniscia.io/reports/gravita-protocol-core-protocol-642b98414a1a960014621fc9/code-style/ActivePool-APL#APL-03C
https://omniscia.io/reports/gravita-protocol-core-protocol-642b98414a1a960014621fc9/code-style/AdminContract-ACT#ACT-01C
https://omniscia.io/reports/gravita-protocol-core-protocol-642b98414a1a960014621fc9/code-style/AdminContract-ACT#ACT-02C
https://omniscia.io/reports/gravita-protocol-core-protocol-642b98414a1a960014621fc9/code-style/AdminContract-ACT#ACT-03C
https://omniscia.io/reports/gravita-protocol-core-protocol-642b98414a1a960014621fc9/code-style/AdminContract-ACT#ACT-04C
https://omniscia.io/reports/gravita-protocol-core-protocol-642b98414a1a960014621fc9/code-style/BorrowerOperations-BOS#BOS-01C
https://omniscia.io/reports/gravita-protocol-core-protocol-642b98414a1a960014621fc9/code-style/BorrowerOperations-BOS#BOS-02C
https://omniscia.io/reports/gravita-protocol-core-protocol-642b98414a1a960014621fc9/code-style/BorrowerOperations-BOS#BOS-03C
https://omniscia.io/reports/gravita-protocol-core-protocol-642b98414a1a960014621fc9/code-style/CollSurplusPool-CSP#CSP-01C

ID Severity Addressed Title

CSP-02C Inefficient mapping Lookups

CSP-03C Inexplicable Ownable Pattern

CSP-04C Redundant Initialization Paradigm

DTN-01C Variable Mutability Specifier (Immutable)

DPL-01C Inefficient Renunciation of Ownership

DPL-02C Inefficient mapping Lookups

DPL-03C Inexplicable Ownable Pattern

DPL-04C Redundant Initialization Paradigm

ERD-01C Non-Standard Interface Name

ERC-01C Inefficient mapping Lookups

ERC-02C Multiple Top-Level Declarations

ERC-03C Redundant Low-Level Assembly Blocks

ERC-04C Variable Mutability Specifier (Immutable)

FCR-01C Inefficient mapping Lookups

FCR-02C Inexistent Error Messages

FCR-03C Leftover Test Code

https://omniscia.io/reports/gravita-protocol-core-protocol-642b98414a1a960014621fc9/code-style/CollSurplusPool-CSP#CSP-02C
https://omniscia.io/reports/gravita-protocol-core-protocol-642b98414a1a960014621fc9/code-style/CollSurplusPool-CSP#CSP-03C
https://omniscia.io/reports/gravita-protocol-core-protocol-642b98414a1a960014621fc9/code-style/CollSurplusPool-CSP#CSP-04C
https://omniscia.io/reports/gravita-protocol-core-protocol-642b98414a1a960014621fc9/code-style/DebtToken-DTN#DTN-01C
https://omniscia.io/reports/gravita-protocol-core-protocol-642b98414a1a960014621fc9/code-style/DefaultPool-DPL#DPL-01C
https://omniscia.io/reports/gravita-protocol-core-protocol-642b98414a1a960014621fc9/code-style/DefaultPool-DPL#DPL-02C
https://omniscia.io/reports/gravita-protocol-core-protocol-642b98414a1a960014621fc9/code-style/DefaultPool-DPL#DPL-03C
https://omniscia.io/reports/gravita-protocol-core-protocol-642b98414a1a960014621fc9/code-style/DefaultPool-DPL#DPL-04C
https://omniscia.io/reports/gravita-protocol-core-protocol-642b98414a1a960014621fc9/code-style/ERC20Decimals-ERD#ERD-01C
https://omniscia.io/reports/gravita-protocol-core-protocol-642b98414a1a960014621fc9/code-style/ERC20Permit-ERC#ERC-01C
https://omniscia.io/reports/gravita-protocol-core-protocol-642b98414a1a960014621fc9/code-style/ERC20Permit-ERC#ERC-02C
https://omniscia.io/reports/gravita-protocol-core-protocol-642b98414a1a960014621fc9/code-style/ERC20Permit-ERC#ERC-03C
https://omniscia.io/reports/gravita-protocol-core-protocol-642b98414a1a960014621fc9/code-style/ERC20Permit-ERC#ERC-04C
https://omniscia.io/reports/gravita-protocol-core-protocol-642b98414a1a960014621fc9/code-style/FeeCollector-FCR#FCR-01C
https://omniscia.io/reports/gravita-protocol-core-protocol-642b98414a1a960014621fc9/code-style/FeeCollector-FCR#FCR-02C
https://omniscia.io/reports/gravita-protocol-core-protocol-642b98414a1a960014621fc9/code-style/FeeCollector-FCR#FCR-03C

ID Severity Addressed Title

FCR-04C Loop Iterator Optimization

FCR-05C Redundant Initialization Paradigm

GBE-01C Unused Function Declaration

GMH-01C Illegible Representation of Value Literal

GMH-02C Repetitive Value Literal

PBE-01C Significantly Inefficient Merging of Pending Gains /
Distributed Funds

PBE-02C Unused Error Declaration

PFD-01C Inexistent Error Message

PFD-02C Redundant External Self-Calls

PFD-03C Redundant Function Implementation

PFD-04C Redundant Initialization Paradigm

PFD-05C Suboptimal Struct Declaration Styles

RGU-01C Inefficient Reentrancy Guard Implementation

SVS-01C Inefficient Renunciation of Ownership

SVS-02C Inefficient mapping Lookups

SVS-03C Inexplicable Ownable Pattern

https://omniscia.io/reports/gravita-protocol-core-protocol-642b98414a1a960014621fc9/code-style/FeeCollector-FCR#FCR-04C
https://omniscia.io/reports/gravita-protocol-core-protocol-642b98414a1a960014621fc9/code-style/FeeCollector-FCR#FCR-05C
https://omniscia.io/reports/gravita-protocol-core-protocol-642b98414a1a960014621fc9/code-style/GravitaBase-GBE#GBE-01C
https://omniscia.io/reports/gravita-protocol-core-protocol-642b98414a1a960014621fc9/code-style/GravitaMath-GMH#GMH-01C
https://omniscia.io/reports/gravita-protocol-core-protocol-642b98414a1a960014621fc9/code-style/GravitaMath-GMH#GMH-02C
https://omniscia.io/reports/gravita-protocol-core-protocol-642b98414a1a960014621fc9/code-style/PoolBase-PBE#PBE-01C
https://omniscia.io/reports/gravita-protocol-core-protocol-642b98414a1a960014621fc9/code-style/PoolBase-PBE#PBE-02C
https://omniscia.io/reports/gravita-protocol-core-protocol-642b98414a1a960014621fc9/code-style/PriceFeed-PFD#PFD-01C
https://omniscia.io/reports/gravita-protocol-core-protocol-642b98414a1a960014621fc9/code-style/PriceFeed-PFD#PFD-02C
https://omniscia.io/reports/gravita-protocol-core-protocol-642b98414a1a960014621fc9/code-style/PriceFeed-PFD#PFD-03C
https://omniscia.io/reports/gravita-protocol-core-protocol-642b98414a1a960014621fc9/code-style/PriceFeed-PFD#PFD-04C
https://omniscia.io/reports/gravita-protocol-core-protocol-642b98414a1a960014621fc9/code-style/PriceFeed-PFD#PFD-05C
https://omniscia.io/reports/gravita-protocol-core-protocol-642b98414a1a960014621fc9/code-style/ReentrancyGuardUpgradeable-RGU#RGU-01C
https://omniscia.io/reports/gravita-protocol-core-protocol-642b98414a1a960014621fc9/code-style/SortedVessels-SVS#SVS-01C
https://omniscia.io/reports/gravita-protocol-core-protocol-642b98414a1a960014621fc9/code-style/SortedVessels-SVS#SVS-02C
https://omniscia.io/reports/gravita-protocol-core-protocol-642b98414a1a960014621fc9/code-style/SortedVessels-SVS#SVS-03C

ID Severity Addressed Title

p

SVS-04C Redundant Initialization Paradigm

SPL-01C Inefficient Renunciation of Ownership

SPL-02C Inefficient mapping Lookups

SPL-03C Inexplicable Contract Member

SPL-04C Inexplicable Ownable Pattern

SPL-05C Loop Iterator Optimizations

SPL-06C Redundant Initialization Paradigm

SPL-07C Suboptimal Struct Declaration Style

TKC-01C Inefficient Application of Access Control

TKC-02C Redundant Function Implementation

VMR-01C Inefficient mapping Lookups

VMR-02C Redundant Data Point

VMR-03C Redundant External Self-Call

VMR-04C Redundant Initialization Paradigm

VMO-01C Loop Iterator Optimizations

VMO-02C Redundant Initialization Paradigm

https://omniscia.io/reports/gravita-protocol-core-protocol-642b98414a1a960014621fc9/code-style/SortedVessels-SVS#SVS-03C
https://omniscia.io/reports/gravita-protocol-core-protocol-642b98414a1a960014621fc9/code-style/SortedVessels-SVS#SVS-04C
https://omniscia.io/reports/gravita-protocol-core-protocol-642b98414a1a960014621fc9/code-style/StabilityPool-SPL#SPL-01C
https://omniscia.io/reports/gravita-protocol-core-protocol-642b98414a1a960014621fc9/code-style/StabilityPool-SPL#SPL-02C
https://omniscia.io/reports/gravita-protocol-core-protocol-642b98414a1a960014621fc9/code-style/StabilityPool-SPL#SPL-03C
https://omniscia.io/reports/gravita-protocol-core-protocol-642b98414a1a960014621fc9/code-style/StabilityPool-SPL#SPL-04C
https://omniscia.io/reports/gravita-protocol-core-protocol-642b98414a1a960014621fc9/code-style/StabilityPool-SPL#SPL-05C
https://omniscia.io/reports/gravita-protocol-core-protocol-642b98414a1a960014621fc9/code-style/StabilityPool-SPL#SPL-06C
https://omniscia.io/reports/gravita-protocol-core-protocol-642b98414a1a960014621fc9/code-style/StabilityPool-SPL#SPL-07C
https://omniscia.io/reports/gravita-protocol-core-protocol-642b98414a1a960014621fc9/code-style/Timelock-TKC#TKC-01C
https://omniscia.io/reports/gravita-protocol-core-protocol-642b98414a1a960014621fc9/code-style/Timelock-TKC#TKC-02C
https://omniscia.io/reports/gravita-protocol-core-protocol-642b98414a1a960014621fc9/code-style/VesselManager-VMR#VMR-01C
https://omniscia.io/reports/gravita-protocol-core-protocol-642b98414a1a960014621fc9/code-style/VesselManager-VMR#VMR-02C
https://omniscia.io/reports/gravita-protocol-core-protocol-642b98414a1a960014621fc9/code-style/VesselManager-VMR#VMR-03C
https://omniscia.io/reports/gravita-protocol-core-protocol-642b98414a1a960014621fc9/code-style/VesselManager-VMR#VMR-04C
https://omniscia.io/reports/gravita-protocol-core-protocol-642b98414a1a960014621fc9/code-style/VesselManagerOperations-VMO#VMO-01C
https://omniscia.io/reports/gravita-protocol-core-protocol-642b98414a1a960014621fc9/code-style/VesselManagerOperations-VMO#VMO-02C

ID Severity Addressed Title

VMO-03C Suboptimal Struct Declaration Styles

https://omniscia.io/reports/gravita-protocol-core-protocol-642b98414a1a960014621fc9/code-style/VesselManagerOperations-VMO#VMO-03C

ActivePool Static Analysis Findings

Type Severity Location

Input Sanitization ActivePool.sol:L84-L106

The linked function(s) accept address arguments yet do not properly sanitize them.

The presence of zero-value addresses, especially in constructor implementations, can cause the contract
to be permanently inoperable. These checks are advised as zero-value inputs are a common side-effect of
off-chain software related bugs.

contracts/ActivePool.sol

APL-01S: Inexistent Sanitization of Input Addresses

Description:

Impact:

Example:

https://omniscia.io/reports/gravita-protocol-core-protocol-642b98414a1a960014621fc9/appendix/finding-types#input-sanitization

function setAddresses(

 address _borrowerOperationsAddress,

 address _collSurplusPoolAddress,

 address _defaultPoolAddress,

 address _stabilityPoolAddress,

 address _vesselManagerAddress,

 address _vesselManagerOperationsAddress

) external initializer {

 require(!isInitialized, "Already initialized");

 isInitialized = true;

 __Ownable_init();

 __ReentrancyGuard_init();

 borrowerOperationsAddress = _borrowerOperationsAddress;

 collSurplusPool = ICollSurplusPool(_collSurplusPoolAddress);

 defaultPool = IDefaultPool(_defaultPoolAddress);

 stabilityPoolAddress = _stabilityPoolAddress;

 vesselManagerAddress = _vesselManagerAddress;

 vesselManagerOperationsAddress = _vesselManagerOperationsAddress;

 renounceOwnership();

}

SOL

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

We advise some basic sanitization to be put in place by ensuring that each address specified is non-zero.

The Gravita Protocol team has opted to not apply a remediation for this exhibit thus rendering it
acknowledged.

Recommendation:

Alleviation:

AdminContract Static Analysis Findings

Type Severity Location

Gas Optimization AdminContract.sol:L211

The linked input argument is set as memory in an external function.

contracts/AdminContract.sol

ACT-01S: Data Location Optimization

Description:

Example:

function isWrappedMany(

 address[] memory _collaterals

) external view returns (bool[] memory wrapped) {

SOL

210

211

212

https://omniscia.io/reports/gravita-protocol-core-protocol-642b98414a1a960014621fc9/appendix/finding-types#gas-optimization

We advise it to be set as calldata optimizing its read-access gas cost.

The argument's data location has been properly updated from memory to calldata , optimizing its read-
access gas cost.

Recommendation:

Alleviation:

Type Severity Location

Code Style AdminContract.sol:L44-L45, L51, L321, L336, L366, L369, L415

The linked representations of numeric literals are sub-optimally represented decreasing the legibility of the
codebase.

contracts/AdminContract.sol

ACT-02S: Illegible Numeric Value Representations

Description:

Example:

uint256 public constant MCR_DEFAULT = 1100000000000000000; // 110%

uint256 public constant CCR_DEFAULT = 1500000000000000000; // 150%

SOL

44

45

https://omniscia.io/reports/gravita-protocol-core-protocol-642b98414a1a960014621fc9/appendix/finding-types#code-style

To properly illustrate each value's purpose, we advise the following guidelines to be followed.
For values
meant to depict fractions with a base of 1e18 , we advise fractions to be utilized directly (i.e. 1e17 becomes
0.1e18) as they are supported.
For values meant to represent a percentage base, we advise each value to
utilize the underscore (_) separator to discern the percentage decimal (i.e. 10000 becomes 100_00 , 300
becomes 3_00 and so on).
Finally, for large numeric values we simply advise the underscore character to be
utilized again to represent them (i.e. 1000000 becomes 1_000_000).

All numeric denominations of the contract have been updated to either utilize the ether representation or
the underscore-separated paradigm outlined in the exhibit. As such, we consider this exhibit fully alleviated.

Recommendation:

Alleviation:

Type Severity Location

Code Style AdminContract.sol:L69

The linked variable has no visibility specifier explicitly set.

contracts/AdminContract.sol

ACT-03S: Inexistent Visibility Specifier

Description:

Example:

mapping(address => CollateralParams) collateralParams;

SOL

69

https://omniscia.io/reports/gravita-protocol-core-protocol-642b98414a1a960014621fc9/appendix/finding-types#code-style

We advise one to be set so to avoid potential compilation discrepancies in the future as the current
behaviour is for the compiler to assign one automatically which may deviate between pragma versions.

An internal visibility specifier has been introduced to the collateralParams contract member, ensuring
that no inconsistencies can arise between compiler versions.

Recommendation:

Alleviation:

Type Severity Location

Input Sanitization AdminContract.sol:L134-L153

The linked function(s) accept address arguments yet do not properly sanitize them.

The presence of zero-value addresses, especially in constructor implementations, can cause the contract
to be permanently inoperable. These checks are advised as zero-value inputs are a common side-effect of
off-chain software related bugs.

contracts/AdminContract.sol

ACT-04S: Inexistent Sanitization of Input Addresses

Description:

Impact:

Example:

function setAddresses(

 address _communityIssuanceAddress,

 address _activePoolAddress,

 address _defaultPoolAddress,

 address _stabilityPoolAddress,

 address _collSurplusPoolAddress,

 address _priceFeedAddress,

 address _shortTimelock,

 address _longTimelock

) external onlyOwner {

 require(!isInitialized);

 communityIssuance = ICommunityIssuance(_communityIssuanceAddress);

 activePool = IActivePool(_activePoolAddress);

 defaultPool = IDefaultPool(_defaultPoolAddress);

 stabilityPool = IStabilityPool(_stabilityPoolAddress);

 collSurplusPool = ICollSurplusPool(_collSurplusPoolAddress);

 priceFeed = IPriceFeed(_priceFeedAddress);

 shortTimelock = _shortTimelock;

 longTimelock = _longTimelock;

}

SOL

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

https://omniscia.io/reports/gravita-protocol-core-protocol-642b98414a1a960014621fc9/appendix/finding-types#input-sanitization

We advise some basic sanitization to be put in place by ensuring that each address specified is non-zero.

The Gravita Protocol team has opted to not apply a remediation for this exhibit thus rendering it
acknowledged.

Recommendation:

Alleviation:

BorrowerOperations Static Analysis Findings

Type Severity Location

Input Sanitization BorrowerOperations.sol:L91-L111

The linked function(s) accept address arguments yet do not properly sanitize them.

The presence of zero-value addresses, especially in constructor implementations, can cause the contract
to be permanently inoperable. These checks are advised as zero-value inputs are a common side-effect of
off-chain software related bugs.

contracts/BorrowerOperations.sol

BOS-01S: Inexistent Sanitization of Input Addresses

Description:

Impact:

Example:

https://omniscia.io/reports/gravita-protocol-core-protocol-642b98414a1a960014621fc9/appendix/finding-types#input-sanitization

function setAddresses(

 address _vesselManagerAddress,

 address _stabilityPoolAddress,

 address _gasPoolAddress,

 address _collSurplusPoolAddress,

 address _sortedVesselsAddress,

 address _debtTokenAddress,

 address _feeCollectorAddress,

 address _adminContractAddress

) external override {

 require(!isInitialized, "Already initialized");

 isInitialized = true;

 vesselManager = IVesselManager(_vesselManagerAddress);

 stabilityPool = IStabilityPool(_stabilityPoolAddress);

 gasPoolAddress = _gasPoolAddress;

 collSurplusPool = ICollSurplusPool(_collSurplusPoolAddress);

 sortedVessels = ISortedVessels(_sortedVesselsAddress);

 debtToken = IDebtToken(_debtTokenAddress);

 feeCollector = IFeeCollector(_feeCollectorAddress);

 adminContract = IAdminContract(_adminContractAddress);

}

SOL

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

We advise some basic sanitization to be put in place by ensuring that each address specified is non-zero.

The Gravita Protocol team has opted to not apply a remediation for this exhibit thus rendering it
acknowledged.

Recommendation:

Alleviation:

CollSurplusPool Static Analysis Findings

Type Severity Location

Code Style CollSurplusPool.sol:L26

The linked variable has no visibility specifier explicitly set.

contracts/CollSurplusPool.sol

CSP-01S: Inexistent Visibility Specifier

Description:

Example:

mapping(address => uint256) balances;

SOL

26

https://omniscia.io/reports/gravita-protocol-core-protocol-642b98414a1a960014621fc9/appendix/finding-types#code-style

We advise one to be set so to avoid potential compilation discrepancies in the future as the current
behaviour is for the compiler to assign one automatically which may deviate between pragma versions.

An internal visibility specifier has been introduced to the balances contract member, ensuring that no
inconsistencies can arise between compiler versions.

Recommendation:

Alleviation:

Type Severity Location

Input Sanitization CollSurplusPool.sol:L32-L49

The linked function(s) accept address arguments yet do not properly sanitize them.

The presence of zero-value addresses, especially in constructor implementations, can cause the contract
to be permanently inoperable. These checks are advised as zero-value inputs are a common side-effect of
off-chain software related bugs.

contracts/CollSurplusPool.sol

CSP-02S: Inexistent Sanitization of Input Addresses

Description:

Impact:

Example:

function setAddresses(

 address _activePoolAddress,

 address _borrowerOperationsAddress,

 address _vesselManagerAddress,

 address _vesselManagerOperationsAddress

) external override initializer {

 require(!isInitialized, "Already initialized");

 isInitialized = true;

 __Ownable_init();

 activePoolAddress = _activePoolAddress;

 borrowerOperationsAddress = _borrowerOperationsAddress;

 vesselManagerAddress = _vesselManagerAddress;

 vesselManagerOperationsAddress = _vesselManagerOperationsAddress;

 renounceOwnership();

}

SOL

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

https://omniscia.io/reports/gravita-protocol-core-protocol-642b98414a1a960014621fc9/appendix/finding-types#input-sanitization

We advise some basic sanitization to be put in place by ensuring that each address specified is non-zero.

The Gravita Protocol team has opted to not apply a remediation for this exhibit thus rendering it
acknowledged.

Recommendation:

Alleviation:

DebtToken Static Analysis Findings

Type Severity Location

Language Specific DebtToken.sol:L88-L90, L92-L94

The linked functions adjust sensitive contract variables yet do not emit an event for it.

contracts/DebtToken.sol

DTN-01S: Inexistent Event Emissions

Description:

Example:

function addWhitelist(address _address) external override onlyTimelock {

 whitelistedContracts[_address] = true;

}

SOL

88

89

90

https://omniscia.io/reports/gravita-protocol-core-protocol-642b98414a1a960014621fc9/appendix/finding-types#language-specific

We advise an event to be declared and correspondingly emitted for each function to ensure off-chain
processes can properly react to this system adjustment.

A WhitelistChanged event has been introduced to the DebtToken contract and is now correspondingly
emitted in both referenced functions, alleviating this exhibit in full.

Recommendation:

Alleviation:

Type Severity Location

Input Sanitization DebtToken.sol:L42-L52

The linked function(s) accept address arguments yet do not properly sanitize them.

The presence of zero-value addresses, especially in constructor implementations, can cause the contract
to be permanently inoperable. These checks are advised as zero-value inputs are a common side-effect of
off-chain software related bugs.

contracts/DebtToken.sol

DTN-02S: Inexistent Sanitization of Input Addresses

Description:

Impact:

Example:

constructor(

 address _vesselManagerAddress,

 address _stabilityPoolAddress,

 address _borrowerOperationsAddress,

 address _timelockAddress

) ERC20("GRAI", "GRAI") {

 vesselManagerAddress = _vesselManagerAddress;

 timelockAddress = _timelockAddress;

 stabilityPool = IStabilityPool(_stabilityPoolAddress);

 borrowerOperationsAddress = _borrowerOperationsAddress;

}

SOL

42

43

44

45

46

47

48

49

50

51

52

https://omniscia.io/reports/gravita-protocol-core-protocol-642b98414a1a960014621fc9/appendix/finding-types#input-sanitization

We advise some basic sanitization to be put in place by ensuring that each address specified is non-zero.

The Gravita Protocol team has opted to not apply a remediation for this exhibit thus rendering it
acknowledged.

Recommendation:

Alleviation:

DefaultPool Static Analysis Findings

Type Severity Location

Input Sanitization DefaultPool.sol:L36-L49

The linked function(s) accept address arguments yet do not properly sanitize them.

The presence of zero-value addresses, especially in constructor implementations, can cause the contract
to be permanently inoperable. These checks are advised as zero-value inputs are a common side-effect of
off-chain software related bugs.

contracts/DefaultPool.sol

DPL-01S: Inexistent Sanitization of Input Addresses

Description:

Impact:

Example:

function setAddresses(address _vesselManagerAddress, address _activePoolAddress)

 external

 initializer

{

 require(!isInitialized, "Already initialized");

 isInitialized = true;

 __Ownable_init();

 vesselManagerAddress = _vesselManagerAddress;

 activePoolAddress = _activePoolAddress;

 renounceOwnership();

}

SOL

36

37

38

39

40

41

42

43

44

45

46

47

48

49

https://omniscia.io/reports/gravita-protocol-core-protocol-642b98414a1a960014621fc9/appendix/finding-types#input-sanitization

We advise some basic sanitization to be put in place by ensuring that each address specified is non-zero.

The Gravita Protocol team has opted to not apply a remediation for this exhibit thus rendering it
acknowledged.

Recommendation:

Alleviation:

FeeCollector Static Analysis Findings

Type Severity Location

Gas Optimization FeeCollector.sol:L136

The linked input arguments are set as memory in external function(s).

contracts/FeeCollector.sol

FCR-01S: Data Location Optimizations

Description:

Example:

function collectFees(address[] memory _borrowers, address[] memory _assets) external o

SOL

136

https://omniscia.io/reports/gravita-protocol-core-protocol-642b98414a1a960014621fc9/appendix/finding-types#gas-optimization

We advise them to be set as calldata optimizing their read-access gas cost.

All input arguments of the FeeCollector::collectFees function have been adjusted to calldata ,
optimizing their read-access gas cost significantly.

Recommendation:

Alleviation:

https://github.com/Gravita-Protocol/Gravita-SmartContracts/blob/5e45123d169a126a3055945373421e1bda5515b9/contracts/FeeCollector.sol#L136-L156

Type Severity Location

Input Sanitization FeeCollector.sol:L42-L63

The linked function(s) accept address arguments yet do not properly sanitize them.

The presence of zero-value addresses, especially in constructor implementations, can cause the contract
to be permanently inoperable. These checks are advised as zero-value inputs are a common side-effect of
off-chain software related bugs.

contracts/FeeCollector.sol

FCR-02S: Inexistent Sanitization of Input Addresses

Description:

Impact:

Example:

https://omniscia.io/reports/gravita-protocol-core-protocol-642b98414a1a960014621fc9/appendix/finding-types#input-sanitization

function setAddresses(

 address _borrowerOperationsAddress,

 address _vesselManagerAddress,

 address _grvtStakingAddress,

 address _debtTokenAddress,

 address _treasuryAddress,

 bool _routeToGRVTStaking

) external initializer {

 require(!isInitialized);

 require(_treasuryAddress != address(0));

 borrowerOperationsAddress = _borrowerOperationsAddress;

 vesselManagerAddress = _vesselManagerAddress;

 grvtStaking = IGRVTStaking(_grvtStakingAddress);

 debtTokenAddress = _debtTokenAddress;

 treasuryAddress = _treasuryAddress;

 routeToGRVTStaking = _routeToGRVTStaking;

 if (_routeToGRVTStaking && address(grvtStaking) == address(0)) {

 revert FeeCollector__InvalidGRVTStakingAddress();

 }

 __Ownable_init();

 isInitialized = true;

}

SOL

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

We advise some basic sanitization to be put in place by ensuring that each address specified is non-zero.

The Gravita Protocol team has opted to not apply a remediation for this exhibit thus rendering it
acknowledged.

Recommendation:

Alleviation:

Type Severity Location

Standard Conformity FeeCollector.sol:L343, L358

The linked statement do not properly validate the returned bool of the EIP-20 standard transfer function.
As the standard dictates, callers must not assume that false is never returned.

If the code mandates that the returned bool is true , this will cause incompatibility with tokens such as
USDT / Tether as no such bool is returned to be evaluated causing the check to fail at all times. On the other
hand, if the token utilized can return a false value under certain conditions but the code does not validate
it, the contract itself can be compromised as having received / sent funds that it never did.

contracts/FeeCollector.sol

FCR-03S: Improper Invocations of EIP-20 transfer

Description:

Impact:

Example:

IDebtToken(debtTokenAddress).transfer(collector, _feeAmount);

SOL

343

https://omniscia.io/reports/gravita-protocol-core-protocol-642b98414a1a960014621fc9/appendix/finding-types#standard-conformity
https://eips.ethereum.org/EIPS/eip-20
https://eips.ethereum.org/EIPS/eip-20#token

Since not all standardized tokens are EIP-20 compliant (such as Tether / USDT), we advise a safe wrapper
library to be utilized instead such as SafeERC20 by OpenZeppelin to opportunistically validate the returned
bool only if it exists in each instance.

Both EIP-20 transfer instances now utilize their safe -prefixed counterparts, ensuring that they are
performed safely regardless of the underlying EIP-20 implementation.

Recommendation:

Alleviation:

https://eips.ethereum.org/EIPS/eip-20
https://eips.ethereum.org/EIPS/eip-20
https://eips.ethereum.org/EIPS/eip-20

GravitaMath Static Analysis Findings

Type Severity Location

Code Style GravitaMath.sol:L62, L63

The linked representation of a numeric literal is sub-optimally represented decreasing the legibility of the
codebase.

contracts/Dependencies/GravitaMath.sol

GMH-01S: Illegible Numeric Value Representation

Description:

Example:

if (_minutes > 525600000) {

SOL

62

https://omniscia.io/reports/gravita-protocol-core-protocol-642b98414a1a960014621fc9/appendix/finding-types#code-style

To properly illustrate the value's purpose, we advise the following guidelines to be followed.
For values
meant to depict fractions with a base of 1e18 , we advise fractions to be utilized directly (i.e. 1e17 becomes
0.1e18) as they are supported.
For values meant to represent a percentage base, we advise each value to
utilize the underscore (_) separator to discern the percentage decimal (i.e. 10000 becomes 100_00 , 300
becomes 3_00 and so on).
Finally, for large numeric values we simply advise the underscore character to be
utilized again to represent them (i.e. 1000000 becomes 1_000_000).

The value, now relocated to its dedicated EXPONENT_CAP declaration, has had the underscore separator
introduced in the correct locations thus alleviating this exhibit.

Recommendation:

Alleviation:

PriceFeed Static Analysis Findings

Type Severity Location

Input Sanitization PriceFeed.sol:L54-L67

The linked function(s) accept address arguments yet do not properly sanitize them.

The presence of zero-value addresses, especially in constructor implementations, can cause the contract
to be permanently inoperable. These checks are advised as zero-value inputs are a common side-effect of
off-chain software related bugs.

contracts/PriceFeed.sol

PFD-01S: Inexistent Sanitization of Input Addresses

Description:

Impact:

Example:

function setAddresses(

 address _adminContract,

 address _rethToken,

 address _stethToken,

 address _wstethToken

) external initializer {

 require(!isInitialized);

 isInitialized = true;

 __Ownable_init();

 adminContract = _adminContract;

 rethToken = _rethToken;

 stethToken = _stethToken;

 wstethToken = _wstethToken;

}

SOL

54

55

56

57

58

59

60

61

62

63

64

65

66

67

https://omniscia.io/reports/gravita-protocol-core-protocol-642b98414a1a960014621fc9/appendix/finding-types#input-sanitization

We advise some basic sanitization to be put in place by ensuring that each address specified is non-zero.

The Gravita Protocol team has opted to not apply a remediation for this exhibit thus rendering it
acknowledged.

Recommendation:

Alleviation:

SortedVessels Static Analysis Findings

Type Severity Location

Code Style SortedVessels.sol:L49

The linked variable has no visibility specifier explicitly set.

contracts/SortedVessels.sol

SVS-01S: Inexistent Visibility Specifier

Description:

Example:

uint256 constant MAX_UINT256 = type(uint256).max;

SOL

49

https://omniscia.io/reports/gravita-protocol-core-protocol-642b98414a1a960014621fc9/appendix/finding-types#code-style

We advise one to be set so to avoid potential compilation discrepancies in the future as the current
behaviour is for the compiler to assign one automatically which may deviate between pragma versions.

The referenced variable is no longer present in the codebase rendering this exhibit no longer applicable.

Recommendation:

Alleviation:

StabilityPool Static Analysis Findings

Type Severity Location

Code Style StabilityPool.sol:L174

The linked variable has no visibility specifier explicitly set.

contracts/StabilityPool.sol

SPL-01S: Inexistent Visibility Specifier

Description:

Example:

mapping(address => Colls) pendingCollGains;

SOL

174

https://omniscia.io/reports/gravita-protocol-core-protocol-642b98414a1a960014621fc9/appendix/finding-types#code-style

We advise one to be set so to avoid potential compilation discrepancies in the future as the current
behaviour is for the compiler to assign one automatically which may deviate between pragma versions.

The pendingCollGains variable is no longer present in the codebase rendering this exhibit no longer
applicable.

Recommendation:

Alleviation:

Type Severity Location

Input Sanitization StabilityPool.sol:L242-L268

The linked function(s) accept address arguments yet do not properly sanitize them.

The presence of zero-value addresses, especially in constructor implementations, can cause the contract
to be permanently inoperable. These checks are advised as zero-value inputs are a common side-effect of
off-chain software related bugs.

contracts/StabilityPool.sol

SPL-02S: Inexistent Sanitization of Input Addresses

Description:

Impact:

Example:

https://omniscia.io/reports/gravita-protocol-core-protocol-642b98414a1a960014621fc9/appendix/finding-types#input-sanitization

function setAddresses(

 address _borrowerOperationsAddress,

 address _vesselManagerAddress,

 address _activePoolAddress,

 address _debtTokenAddress,

 address _sortedVesselsAddress,

 address _communityIssuanceAddress,

 address _adminContractAddress

) external initializer override {

 require(!isInitialized, "StabilityPool: Already initialized");

 isInitialized = true;

 __Ownable_init();

 __ReentrancyGuard_init();

 borrowerOperations = IBorrowerOperations(_borrowerOperationsAddress);

 vesselManager = IVesselManager(_vesselManagerAddress);

 activePool = IActivePool(_activePoolAddress);

 debtToken = IDebtToken(_debtTokenAddress);

 sortedVessels = ISortedVessels(_sortedVesselsAddress);

 communityIssuance = ICommunityIssuance(_communityIssuanceAddress);

 adminContract = IAdminContract(_adminContractAddress);

 P = DECIMAL_PRECISION;

 renounceOwnership();

}

SOL

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

We advise some basic sanitization to be put in place by ensuring that each address specified is non-zero.

The Gravita Protocol team has opted to not apply a remediation for this exhibit thus rendering it
acknowledged.

Recommendation:

Alleviation:

VesselManager Static Analysis Findings

Type Severity Location

Input Sanitization VesselManager.sol:L124-L147

The linked function(s) accept address arguments yet do not properly sanitize them.

The presence of zero-value addresses, especially in constructor implementations, can cause the contract
to be permanently inoperable. These checks are advised as zero-value inputs are a common side-effect of
off-chain software related bugs.

contracts/VesselManager.sol

VMR-01S: Inexistent Sanitization of Input Addresses

Description:

Impact:

Example:

https://omniscia.io/reports/gravita-protocol-core-protocol-642b98414a1a960014621fc9/appendix/finding-types#input-sanitization

function setAddresses(

 address _borrowerOperationsAddress,

 address _stabilityPoolAddress,

 address _gasPoolAddress,

 address _collSurplusPoolAddress,

 address _debtTokenAddress,

 address _feeCollectorAddress,

 address _sortedVesselsAddress,

 address _vesselManagerOperationsAddress,

 address _adminContractAddress

) external override initializer {

 require(!isInitialized, "Already initialized");

 isInitialized = true;

 __Ownable_init();

 borrowerOperations = _borrowerOperationsAddress;

 stabilityPool = IStabilityPool(_stabilityPoolAddress);

 gasPoolAddress = _gasPoolAddress;

 collSurplusPool = ICollSurplusPool(_collSurplusPoolAddress);

 debtToken = IDebtToken(_debtTokenAddress);

 feeCollector = IFeeCollector(_feeCollectorAddress);

 sortedVessels = ISortedVessels(_sortedVesselsAddress);

 vesselManagerOperations = IVesselManagerOperations(_vesselManagerOperationsAddress

 adminContract = IAdminContract(_adminContractAddress);

}

SOL

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

We advise some basic sanitization to be put in place by ensuring that each address specified is non-zero.

The Gravita Protocol team has opted to not apply a remediation for this exhibit thus rendering it
acknowledged.

Recommendation:

Alleviation:

VesselManagerOperations Static Analysis Findings

Type Severity Location

Code Style VesselManagerOperations.sol:L15, L389, L960

The linked representations of numeric literals are sub-optimally represented decreasing the legibility of the
codebase.

contracts/VesselManagerOperations.sol

VMO-01S: Illegible Numeric Value Representations

Description:

Example:

uint256 public constant REDEMPTION_SOFTENING_PARAM = 970; // 97%

SOL

15

https://omniscia.io/reports/gravita-protocol-core-protocol-642b98414a1a960014621fc9/appendix/finding-types#code-style

To properly illustrate each value's purpose, we advise the following guidelines to be followed.
For values
meant to depict fractions with a base of 1e18 , we advise fractions to be utilized directly (i.e. 1e17 becomes
0.1e18) as they are supported.
For values meant to represent a percentage base, we advise each value to
utilize the underscore (_) separator to discern the percentage decimal (i.e. 10000 becomes 100_00 , 300
becomes 3_00 and so on).
Finally, for large numeric values we simply advise the underscore character to be
utilized again to represent them (i.e. 1000000 becomes 1_000_000).

The Gravita Protocol team has opted to not apply a remediation for this exhibit thus rendering it
acknowledged.

Recommendation:

Alleviation:

Type Severity Location

Input Sanitization VesselManagerOperations.sol:L59-L76

The linked function(s) accept address arguments yet do not properly sanitize them.

The presence of zero-value addresses, especially in constructor implementations, can cause the contract
to be permanently inoperable. These checks are advised as zero-value inputs are a common side-effect of
off-chain software related bugs.

contracts/VesselManagerOperations.sol

VMO-02S: Inexistent Sanitization of Input Addresses

Description:

Impact:

Example:

function setAddresses(

 address _vesselManagerAddress,

 address _sortedVesselsAddress,

 address _stabilityPoolAddress,

 address _collSurplusPoolAddress,

 address _debtTokenAddress,

 address _adminContractAddress

) external initializer {

 require(!isInitialized, "Already initialized");

 __Ownable_init();

 vesselManager = IVesselManager(_vesselManagerAddress);

 sortedVessels = ISortedVessels(_sortedVesselsAddress);

 stabilityPool = IStabilityPool(_stabilityPoolAddress);

 collSurplusPool = ICollSurplusPool(_collSurplusPoolAddress);

 debtToken = IDebtToken(_debtTokenAddress);

 adminContract = IAdminContract(_adminContractAddress);

 isInitialized = true;

}

SOL

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

https://omniscia.io/reports/gravita-protocol-core-protocol-642b98414a1a960014621fc9/appendix/finding-types#input-sanitization

We advise some basic sanitization to be put in place by ensuring that each address specified is non-zero.

The Gravita Protocol team has opted to not apply a remediation for this exhibit thus rendering it
acknowledged.

Recommendation:

Alleviation:

AdminContract Manual Review Findings

Type Severity Location

Centralization Concern AdminContract.sol:L279-L281

The AdminContract::setAsDefault function permits the configuration of a collateral to be re-set to its
default values, a trait that should not be accessible to a centralized party.

contracts/AdminContract.sol

ACT-01M: Improper Reset Functionality

Description:

Example:

function setAsDefault(address _collateral) external onlyOwner {

 _setAsDefault(_collateral);

}

SOL

279

280

281

https://omniscia.io/reports/gravita-protocol-core-protocol-642b98414a1a960014621fc9/appendix/finding-types#centralization-concern
https://github.com/Gravita-Protocol/Gravita-SmartContracts/blob/bfa97cb37dc0e2927e75b36753585140f25a26dd/contracts/AdminContract.sol#L279-L281

We advise this function to either be omitted from the codebase or locked behind the long timelock to avoid
improper resets of collateral configurations.

The default values of a collateral parameterization have been relocated to the
AdminContract::addNewCollateral function instead, ensuring that these default values cannot be
adjusted and that they are applied in a trustless fashion to each new collateral rather than being set by a
centralized entity. As such, this exhibit has been alleviated as no AdminContract::setAsDefault or similar
mechanism is present in the codebase.

Recommendation:

Alleviation:

https://github.com/Gravita-Protocol/Gravita-SmartContracts/blob/5e45123d169a126a3055945373421e1bda5515b9/contracts/AdminContract.sol#L160-L202
https://github.com/Gravita-Protocol/Gravita-SmartContracts/blob/5e45123d169a126a3055945373421e1bda5515b9/contracts/AdminContract.sol#L279-L281

Type Severity Location

Logical Fault AdminContract.sol:L273-L277

The AdminContract::sanitizeParameters function permits any EIP-20 asset to be configured within the
Gravita Protocol, a trait that is highly undesirable.

While a collateral would still need an oracle to be configured for it to behave properly, the ability to
arbitrarily configure a collateral to its default values is an ill-advised trait that can be exploited under ideal
conditions, such as an oracle being initialized prior to the collateral being configured by a timelock vote.

contracts/AdminContract.sol

ACT-02M: Improper Permission of Collateral Activation

Description:

Impact:

Example:

function sanitizeParameters(address _collateral) external {

 if (!collateralParams[_collateral].hasCollateralConfigured) {

 _setAsDefault(_collateral);

 }

}

SOL

273

274

275

276

277

https://omniscia.io/reports/gravita-protocol-core-protocol-642b98414a1a960014621fc9/appendix/finding-types#logical-fault
https://github.com/Gravita-Protocol/Gravita-SmartContracts/blob/bfa97cb37dc0e2927e75b36753585140f25a26dd/contracts/AdminContract.sol#L273-L277
https://eips.ethereum.org/EIPS/eip-20

We advise the code to disallow such an initialization, instead ensuring that the collateral has already been
configured wherever it is invoked (i.e. BorrowerOperations::openVessel).

The AdminContract::sanitizeParameters function has been omitted from the codebase entirely and the
BorrowerOperations::openVessel function that was utilizing it now ensures that the _asset is active at
the AdminContract instance, rendering this exhibit fully alleviated.

Recommendation:

Alleviation:

https://github.com/Gravita-Protocol/Gravita-SmartContracts/blob/bfa97cb37dc0e2927e75b36753585140f25a26dd/contracts/BorrowerOperations.sol#L115-L203
https://github.com/Gravita-Protocol/Gravita-SmartContracts/blob/5e45123d169a126a3055945373421e1bda5515b9/contracts/AdminContract.sol#L273-L277
https://github.com/Gravita-Protocol/Gravita-SmartContracts/blob/5e45123d169a126a3055945373421e1bda5515b9/contracts/BorrowerOperations.sol#L115-L203

Type Severity Location

Logical Fault AdminContract.sol:L376-L388

The gas compensation that is provided for Vessels is an integral part of the protocol and must not change
throughout an asset's lifetime as it will retroactively affect existing vessels, potentially causing them to
acquire higher / smaller collateral values than expected.

All debt-related functions (i.e. GravitaBase::_getCompositeDebt ,
VesselManagerOperations::_liquidateNormalMode , etc.) will be significantly affected by a downward /
upward movement in the gas compensation to a point whereby the system's accounting will become
inaccurate and over-track / under-track the debt of existing vessels.

contracts/AdminContract.sol

ACT-03M: Improper Capability of Gas Compensation Adjustment

Description:

Impact:

Example:

function setDebtTokenGasCompensation(

 address _collateral,

 uint256 gasCompensation

)

 public

 override

 longTimelockOnly

 safeCheck("Gas Compensation", _collateral, gasCompensation, 1 ether, 400 ether)

{

 uint256 oldGasComp = collateralParams[_collateral].debtTokenGasCompensation;

 collateralParams[_collateral].debtTokenGasCompensation = gasCompensation;

 emit GasCompensationChanged(oldGasComp, gasCompensation);

}

SOL

376

377

378

379

380

381

382

383

384

385

386

387

388

https://omniscia.io/reports/gravita-protocol-core-protocol-642b98414a1a960014621fc9/appendix/finding-types#logical-fault
https://github.com/Gravita-Protocol/Gravita-SmartContracts/blob/bfa97cb37dc0e2927e75b36753585140f25a26dd/contracts/Dependencies/GravitaBase.sol#L35-L37
https://github.com/Gravita-Protocol/Gravita-SmartContracts/blob/bfa97cb37dc0e2927e75b36753585140f25a26dd/contracts/VesselManagerOperations.sol#L609-L646

We advise this function to be omitted and configuration of the debtTokenGasCompensation to solely be
permitted during an asset's initialization in the system.

Our recommended course of action has been applied fully, removing the
AdminContract::setDebtTokenGasCompensation function from the system entirely and permitting
configuration of this value solely during a collateral's inclusion to the system via
AdminContract::addNewCollateral .

Recommendation:

Alleviation:

https://github.com/Gravita-Protocol/Gravita-SmartContracts/blob/5e45123d169a126a3055945373421e1bda5515b9/contracts/AdminContract.sol#L376-L388
https://github.com/Gravita-Protocol/Gravita-SmartContracts/blob/5e45123d169a126a3055945373421e1bda5515b9/contracts/AdminContract.sol#L160-L202

ERC20Permit Manual Review Findings

Type Severity Location

Logical Fault ERC20Permit.sol:L61-L78

The ERC20Permit contract will calculate the DOMAIN_SEPARATOR only once during its lifetime within its
constructor .

While the likelihood of a blockchain fork resulting in a viable chain is very low, the attack vector is trivially
exploitable should this happen and would cause fund loss.

contracts/Dependencies/ERC20Permit.sol

ERC-01M: Insecure EIP-2612 Implementation

Description:

Impact:

Example:

constructor() {

 uint256 chainID;

 assembly {

 chainID := chainid()

 }

 DOMAIN_SEPARATOR = keccak256(

 abi.encode(

 keccak256(

 "EIP712Domain(string name,string version,uint256 chainId,address verif

),

 keccak256(bytes(name())),

 keccak256(bytes("1")), // Version

 chainID,

 address(this)

)

);

}

SOL

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

https://omniscia.io/reports/gravita-protocol-core-protocol-642b98414a1a960014621fc9/appendix/finding-types#logical-fault

We strongly advise a paradigm similar to OpenZeppelin's draft-ERC20Permit to be applied, re-calculating
the DOMAIN_SEPARATOR with the current chainid on a need-to basis as the contract is currently susceptible
to cross-chain replay attacks should the blockchain it is deployed into be forked.

The Gravita Protocol team has opted to not apply a remediation for this exhibit thus rendering it
acknowledged.

}

Recommendation:

Alleviation:

https://github.com/OpenZeppelin/openzeppelin-contracts/blob/v4.8.2/contracts/token/ERC20/extensions/draft-ERC20Permit.sol

Type Severity Location

Language Specific ERC20Permit.sol:L101

The ecrecover function is a low-level cryptographic function that should be utilized after appropriate
sanitizations have been enforced on its arguments, namely on the s and v values. This is due to the
inherent trait of the curve to be symmetrical on the x-axis and thus permitting signatures to be replayed with
the same x value (r) but a different y value (s).

Should the payload being verified by the signature rely on differentiation based on the s or v arguments, it
will be possible to replay the signature for the same data validly and acquire authorization twice.

contracts/Dependencies/ERC20Permit.sol

ERC-02M: Insecure Elliptic Curve Recovery Mechanism

Description:

Impact:

Example:

https://omniscia.io/reports/gravita-protocol-core-protocol-642b98414a1a960014621fc9/appendix/finding-types#language-specific

function permit(

 address owner,

 address spender,

 uint256 amount,

 uint256 deadline,

 uint8 v,

 bytes32 r,

 bytes32 s

) public virtual override {

 require(block.timestamp <= deadline, "Permit: expired deadline");

 bytes32 hashStruct = keccak256(

 abi.encode(PERMIT_TYPEHASH, owner, spender, amount, _nonces[owner].current(),

);

 bytes32 _hash = keccak256(abi.encodePacked(uint16(0x1901), DOMAIN_SEPARATOR, hashS

 address signer = ecrecover(_hash, v, r, s);

 require(signer != address(0) && signer == owner, "ERC20Permit: Invalid signature")

 _nonces[owner].increment();

 _approve(owner, spender, amount);

}

SOL

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

We advise them to be sanitized by ensuring that v is equal to either 27 or 28 (v ∈ {27, 28}) and to
ensure that s is existent in the lower half order of the elliptic curve (0 < s < secp256k1n ÷ 2 + 1) by
ensuring it is less than 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF5D576E7357A4501DDFE92F46681B20A1 . A
reference implementation of those checks can be observed in the ECDSA library of OpenZeppelin and the
rationale behind those restrictions exists within Appendix F of the Yellow Paper.

The ECDSA library of OpenZeppelin is now in use by the codebase that applies the relevant security checks,
alleviating this exhibit.

Recommendation:

Alleviation:

https://github.com/OpenZeppelin/openzeppelin-contracts/blob/v4.3.2/contracts/utils/cryptography/ECDSA.sol#L162-L167
https://ethereum.github.io/yellowpaper/paper.pdf

GravitaSafeMath128 Manual Review Findings

Type Severity Location

Language Specific GravitaSafeMath128.sol:L9, L17

The GravitaSafeMath128 contract improperly applies "safety" in the GravitaSafeMath128::add function
by evaluating a require conditional after the unsafe operation has been performed. Additionally, the
GravitaSafeMath128::sub function will apply a require check that guarantees the safety of the ensuing
subtraction, executing it inefficiently.

contracts/Dependencies/GravitaSafeMath128.sol

GSM-01M: Improper Application of Safe Arithmetics

Description:

Example:

library GravitaSafeMath128 {

 function add(uint128 a, uint128 b) internal pure returns (uint128) {

 uint128 c = a + b;

 require(c >= a, "GravitaSafeMath128: addition overflow");

 return c;

 }

 function sub(uint128 a, uint128 b) internal pure returns (uint128) {

 require(b <= a, "GravitaSafeMath128: subtraction overflow");

 uint128 c = a - b;

 return c;

 }

}

SOL

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

https://omniscia.io/reports/gravita-protocol-core-protocol-642b98414a1a960014621fc9/appendix/finding-types#language-specific
https://github.com/Gravita-Protocol/Gravita-SmartContracts/blob/bfa97cb37dc0e2927e75b36753585140f25a26dd/contracts/Dependencies/GravitaSafeMath128.sol#L8-L13
https://github.com/Gravita-Protocol/Gravita-SmartContracts/blob/bfa97cb37dc0e2927e75b36753585140f25a26dd/contracts/Dependencies/GravitaSafeMath128.sol#L15-L20

We advise both code blocks to be wrapped in unchecked code blocks due to Solidity's built-in safe
arithmetics in versions 0.8.X and up. In the present code, an overflow in GravitaSafeMath128::add will
never yield the error message of the require check as the overflow would fail immediately during the
addition. As such, the code presently has unreachable statements as well as inefficient code in both of its
functions.

The GravitaSafeMath128 contract has been omitted from the codebase entirely as a result of this finding.
As a result, we consider this exhibit alleviated as its described issue is no longer present in the codebase.

Recommendation:

Alleviation:

https://github.com/Gravita-Protocol/Gravita-SmartContracts/blob/bfa97cb37dc0e2927e75b36753585140f25a26dd/contracts/Dependencies/GravitaSafeMath128.sol#L8-L13

PriceFeed Manual Review Findings

Type Severity Location

Centralization Concern PriceFeed.sol:L71-L85, L87-L89, L91-L93

The PriceFeed oracle system can be adjusted by the owner and / or adminContract of the Gravita
Protocol system at will.

contracts/PriceFeed.sol

PFD-01M: Significant Centralization of Sensitive Functionality

Description:

Example:

function addOracle(

 address _token,

 address _chainlinkOracle,

 bool _isEthIndexed

) external override isController {

 AggregatorV3Interface newOracle = AggregatorV3Interface(_chainlinkOracle);

 _validateFeedResponse(newOracle);

 if (registeredOracles[_token].exists) {

 uint256 timelockRelease = block.timestamp.add(_getOracleUpdateTimelock());

 queuedOracles[_token] = OracleRecord(newOracle, timelockRelease, true, true, _

 } else {

 registeredOracles[_token] = OracleRecord(newOracle, block.timestamp, true, tru

 emit NewOracleRegistered(_token, _chainlinkOracle, _isEthIndexed);

 }

}

function deleteOracle(address _token) external override isController {

 delete registeredOracles[_token];

}

function deleteQueuedOracle(address _token) external override isController {

 delete queuedOracles[_token];

}

SOL

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

https://omniscia.io/reports/gravita-protocol-core-protocol-642b98414a1a960014621fc9/appendix/finding-types#centralization-concern

We advise these functions to be invoke-able solely by governance mechanisms as they present a significant
centralization threat to the protocol. To note, the oracle update timelock can be bypassed entirely by
invoking PriceFeed::deleteOracle followed by PriceFeed::addOracle , a trait that should also be
addressed in the system.

The code was revised to instead ensure that the PriceFeed::addOracle (now labelled
PriceFeed::setOracle) function can be solely invoked by a timelock instead of a centralized entity. As
such, we consider this exhibit alleviated provided that the timelock is in use by a multi-signature wallet, DAO,
or similar multi-party collective.

Recommendation:

Alleviation:

https://github.com/Gravita-Protocol/Gravita-SmartContracts/blob/bfa97cb37dc0e2927e75b36753585140f25a26dd/contracts/PriceFeed.sol#L87-L89
https://github.com/Gravita-Protocol/Gravita-SmartContracts/blob/bfa97cb37dc0e2927e75b36753585140f25a26dd/contracts/PriceFeed.sol#L71-L85
https://github.com/Gravita-Protocol/Gravita-SmartContracts/blob/5e45123d169a126a3055945373421e1bda5515b9/contracts/PriceFeed.sol#L71-L85

Type Severity Location

Logical Fault PriceFeed.sol:L281

The catch clause of the first try-catch construct in PriceFeed::_fetchCurrentFeedResponse is
incorrect as it will continue execution of the function. As such, if the _priceAggregator does not implement
the decimals function but implements the latestRoundData function it will be accepted by the contract as
correct with a decimal accuracy of 0 incorrectly.

The potential of an aggregator supporting the latestRoundData function but not the decimals one is
inexistent, however, custom oracle implementations may fall into this category and would cause the system
to misbehave greatly.

contracts/PriceFeed.sol

PFD-02M: Incorrect Error Handling

Description:

Impact:

Example:

https://omniscia.io/reports/gravita-protocol-core-protocol-642b98414a1a960014621fc9/appendix/finding-types#logical-fault
https://github.com/Gravita-Protocol/Gravita-SmartContracts/blob/bfa97cb37dc0e2927e75b36753585140f25a26dd/contracts/PriceFeed.sol#L274-L294

function _fetchCurrentFeedResponse(AggregatorV3Interface _priceAggregator)

 internal

 view

 returns (FeedResponse memory response)

{

 try _priceAggregator.decimals() returns (uint8 decimals) {

 response.decimals = decimals;

 } catch {}

 try _priceAggregator.latestRoundData() returns (

 uint80 roundId,

 int256 answer,

 uint256, /* startedAt */

 uint256 timestamp,

 uint80 /* answeredInRound */

) {

 response.roundId = roundId;

 response.answer = answer;

 response.timestamp = timestamp;

 response.success = true;

 } catch {}

}

SOL

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

We advise the code to instead yield response directly in the first catch clause, ensuring that the Chainlink
response is treated as invalid if the feed does not support the decimals function similarly to the Liquity
implementation.

The code was updated to yield the empty response akin to the catch block of the latestRoundData
invocation, ensuring that the code properly fails if the decimals function is not supported by the Chainlink
oracle being added.

Recommendation:

Alleviation:

Type Severity Location

Logical Fault PriceFeed.sol:L71-L85

The registration of an oracle to the system via PriceFeed::addOracle does not set an initial price for the
asset in contrast to the Liquity implementation. As such, if PriceFeed::fetchPrice is invoked when the
Chainlink oracle stops behaving properly the yielded lastTokenGoodPrice will be 0 incorrectly.

If an oracle is added to the system and immediately stops behaving properly, the PriceFeed::fetchPrice
function will yield an incorrect price of 0 that will be consumed by its callers.

contracts/PriceFeed.sol

PFD-03M: Inexistent Initialization of Price

Description:

Impact:

Example:

function addOracle(

 address _token,

 address _chainlinkOracle,

 bool _isEthIndexed

) external override isController {

 AggregatorV3Interface newOracle = AggregatorV3Interface(_chainlinkOracle);

 _validateFeedResponse(newOracle);

 if (registeredOracles[_token].exists) {

 uint256 timelockRelease = block.timestamp.add(_getOracleUpdateTimelock());

 queuedOracles[_token] = OracleRecord(newOracle, timelockRelease, true, true, _

 } else {

 registeredOracles[_token] = OracleRecord(newOracle, block.timestamp, true, tru

 emit NewOracleRegistered(_token, _chainlinkOracle, _isEthIndexed);

 }

}

SOL

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

https://omniscia.io/reports/gravita-protocol-core-protocol-642b98414a1a960014621fc9/appendix/finding-types#logical-fault
https://github.com/Gravita-Protocol/Gravita-SmartContracts/blob/bfa97cb37dc0e2927e75b36753585140f25a26dd/contracts/PriceFeed.sol#L71-L85
https://github.com/Gravita-Protocol/Gravita-SmartContracts/blob/bfa97cb37dc0e2927e75b36753585140f25a26dd/contracts/PriceFeed.sol#L97-L133
https://github.com/Gravita-Protocol/Gravita-SmartContracts/blob/bfa97cb37dc0e2927e75b36753585140f25a26dd/contracts/PriceFeed.sol#L97-L133

We advise the PriceFeed::addOracle function to set the latest good price as well, ensuring that the system
will behave properly under all circumstances.

The PriceFeed::addOracle (now labelled PriceFeed::setOracle) function now properly extracts and
consumes the most recent responses of the Chainlink oracle being added, rendering the behaviour outlined
in the exhibit impossible in the latest iteration of the codebase.

Recommendation:

Alleviation:

https://github.com/Gravita-Protocol/Gravita-SmartContracts/blob/bfa97cb37dc0e2927e75b36753585140f25a26dd/contracts/PriceFeed.sol#L71-L85
https://github.com/Gravita-Protocol/Gravita-SmartContracts/blob/5e45123d169a126a3055945373421e1bda5515b9/contracts/PriceFeed.sol#L71-L85

Type Severity Location

Logical Fault PriceFeed.sol:L171

The referenced statement will attempt to query the stETH price using a USD oracle and if it does not exist, it
will treat the stETH equivalent of the wstETH as one-to-one interchangeable with ETH thus using the price
of ETH to calculate the price of the wstETH value.

The arbitrage opportunities introduced can lead to the creation of bad debt in the system and can be
exaggerated via flash-loans.

contracts/PriceFeed.sol

PFD-04M: Incorrect Lido Staked ETH Value Assumption

Description:

Impact:

Example:

function _fetchNativeWstETHPrice() internal returns (uint256 price) {

 uint256 wstEthToStEthValue = _getWstETH_StETHValue();

 OracleRecord storage stEth_UsdOracle = registeredOracles[stethToken];

 price = stEth_UsdOracle.exists ? this.fetchPrice(stethToken) : _calcEthPrice(wstEt

 _storePrice(wstethToken, price);

}

SOL

168

169

170

171

172

173

https://omniscia.io/reports/gravita-protocol-core-protocol-642b98414a1a960014621fc9/appendix/finding-types#logical-fault

We advise this fallback mechanism to be omitted as staked counterparts of ETH always trade at either a
premium or a loss in comparison to the actual ETH asset, causing PriceFeed::_fetchNativeWstETHPrice
to introduce arbitrage opportunities.

Assets that relate to ETH2.0 wrapped ETH are no longer treated as a special case by the oracle, instead
utilizing the traditional Chainlink-related methodology to assess their price. As such, we consider this exhibit
fully alleviated.

Recommendation:

Alleviation:

https://github.com/Gravita-Protocol/Gravita-SmartContracts/blob/bfa97cb37dc0e2927e75b36753585140f25a26dd/contracts/PriceFeed.sol#L168-L173

Type Severity Location

Logical Fault PriceFeed.sol:L171

The referenced statement will fetch the price of the stETH token and store it as the price of the wstETH
token which is incorrect.

The price reported per unit of wstETH will always be incorrect if a USD oracle has been defined for stETH as
it will yield the price of stETH and not wstETH .

contracts/PriceFeed.sol

We advise the price of the stETH token fetched to be multiplied by the wstEthToStEthValue as it
represents the exchange rate between wstETH and stETH , the former's price being what we are interested
in.

Assets that relate to ETH2.0 wrapped ETH are no longer treated as a special case by the oracle, instead
utilizing the traditional Chainlink-related methodology to assess their price. As such, we consider this exhibit
fully alleviated.

PFD-05M: Incorrect Lido Staked ETH Price Usage

Description:

Impact:

Example:

function _fetchNativeWstETHPrice() internal returns (uint256 price) {

 uint256 wstEthToStEthValue = _getWstETH_StETHValue();

 OracleRecord storage stEth_UsdOracle = registeredOracles[stethToken];

 price = stEth_UsdOracle.exists ? this.fetchPrice(stethToken) : _calcEthPrice(wstEt

 _storePrice(wstethToken, price);

}

SOL

168

169

170

171

172

173

Recommendation:

Alleviation:

https://omniscia.io/reports/gravita-protocol-core-protocol-642b98414a1a960014621fc9/appendix/finding-types#logical-fault

SafeMath Manual Review Findings

Type Severity Location

Language Specific SafeMath.sol:L32, L68, L90

The SafeMath contract improperly applies "safety" in the SafeMath::add and SafeMath::mul functions by
evaluating a require conditional after each unsafe operation has been performed. Additionally, the
SafeMath::sub function will apply a require check that guarantees the safety of the ensuing subtraction,
executing it inefficiently.

contracts/Dependencies/SafeMath.sol

SMH-01M: Improper Application of Safe Arithmetics

Description:

Example:

https://omniscia.io/reports/gravita-protocol-core-protocol-642b98414a1a960014621fc9/appendix/finding-types#language-specific
https://github.com/Gravita-Protocol/Gravita-SmartContracts/blob/bfa97cb37dc0e2927e75b36753585140f25a26dd/contracts/Dependencies/SafeMath.sol#L31-L36
https://github.com/Gravita-Protocol/Gravita-SmartContracts/blob/bfa97cb37dc0e2927e75b36753585140f25a26dd/contracts/Dependencies/SafeMath.sol#L82-L94
https://github.com/Gravita-Protocol/Gravita-SmartContracts/blob/bfa97cb37dc0e2927e75b36753585140f25a26dd/contracts/Dependencies/SafeMath.sol#L47-L49

/**

 * @dev Returns the subtraction of two unsigned integers, reverting with custom messag

 * overflow (when the result is negative).

 *

 * Counterpart to Solidity's `-` operator.

 *

 * Requirements:

 * - Subtraction cannot overflow.

 *

 * _Available since v2.4.0._

 */

function sub(

 uint256 a,

 uint256 b,

 string memory errorMessage

) internal pure returns (uint256) {

 require(b <= a, errorMessage);

 uint256 c = a - b;

 return c;

}

/**

 * @dev Returns the multiplication of two unsigned integers, reverting on

 * overflow.

 *

 * Counterpart to Solidity's `*` operator.

 *

 * Requirements:

 * - Multiplication cannot overflow.

 */

function mul(uint256 a, uint256 b) internal pure returns (uint256) {

 // Gas optimization: this is cheaper than requiring 'a' not being zero, but the

 // benefit is lost if 'b' is also tested.

 // See: https://github.com/OpenZeppelin/openzeppelin-contracts/pull/522

 if (a == 0) {

 return 0;

 }

 uint256 c = a * b;

 require(c / a == b, "mul overflow");

 return c;

}

SOL

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

We advise both code blocks to be wrapped in unchecked code blocks due to Solidity's built-in safe
arithmetics in versions 0.8.X and up. In the present code, an overflow in SafeMath::add / SafeMath::mul
will never yield the error message of the require check as the overflow would fail immediately during
the addition / multiplication. As such, the code presently has unreachable statements as well as inefficient
code in all of its functions.

The SafeMath contract has been omitted from the codebase entirely as a result of this finding. As a result,
we consider this exhibit alleviated as its described issue is no longer present in the codebase.

Recommendation:

Alleviation:

https://github.com/Gravita-Protocol/Gravita-SmartContracts/blob/bfa97cb37dc0e2927e75b36753585140f25a26dd/contracts/Dependencies/SafeMath.sol#L31-L36
https://github.com/Gravita-Protocol/Gravita-SmartContracts/blob/bfa97cb37dc0e2927e75b36753585140f25a26dd/contracts/Dependencies/SafeMath.sol#L82-L94

SafetyTransfer Manual Review Findings

Type Severity Location

Logical Fault SafetyTransfer.sol:L21

The SafetyTransfer::decimalsCorrection function will misbehave if the _token has decimals that are
greater than the value of 18 .

The decimal correction mechanism will be incorrect in tokens with abnormal decimals, yielding significantly
less values than expected.

contracts/Dependencies/SafetyTransfer.sol

STR-01M: Incorrect Decimal Assumption

Description:

Impact:

Example:

//_amount is in ether (1e18) and we want to convert it to the token decimal

function decimalsCorrection(address _token, uint256 _amount)

 internal

 view

 returns (uint256)

{

 if (_token == address(0)) return _amount;

 if (_amount == 0) return 0;

 uint8 decimals = ERC20Decimals(_token).decimals();

 if (decimals < 18) {

 return _amount.div(10**(18 - decimals));

 }

 return _amount;

}

SOL

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

https://omniscia.io/reports/gravita-protocol-core-protocol-642b98414a1a960014621fc9/appendix/finding-types#logical-fault
https://github.com/Gravita-Protocol/Gravita-SmartContracts/blob/bfa97cb37dc0e2927e75b36753585140f25a26dd/contracts/Dependencies/SafetyTransfer.sol#L12-L26

We advise the code to introduce an else branch that evaluates whether decimals is greater-than (>) the
value of 18 , in which case it should offset the _amount via a multiplication rather than division.

The decimals of a token are properly handled by the SafetyTransfer::decimalsCorrection function as
they are normalized in either an upwards or downwards trajectory depending on whether the decimals
exceed the default value of 18 or subceed it.

Recommendation:

Alleviation:

https://github.com/Gravita-Protocol/Gravita-SmartContracts/blob/5e45123d169a126a3055945373421e1bda5515b9/contracts/Dependencies/SafetyTransfer.sol#L12-L26

Type Severity Location

Mathematical Operations SafetyTransfer.sol:L22

The SafetyTransfer::decimalsCorrection function is utilized to assess how much funds should be
transferred. As such, it is possible to specify a value that will truncate to 0 when "normalized" to the token's
decimal accuracy, permitting deposits of zero funds to acquire a non-zero effective value in the protocol.

It is currently possible to trick functions such as BorrowerOperations::_activePoolAddColl to perform a
zero-value transfer yet credit a non-zero deposit value to the caller, significantly compromising the
operational integrity of the protocol.

contracts/Dependencies/SafetyTransfer.sol

STR-02M: Insecure Conversion of Amount

Description:

Impact:

Example:

function decimalsCorrection(address _token, uint256 _amount)

 internal

 view

 returns (uint256)

{

 if (_token == address(0)) return _amount;

 if (_amount == 0) return 0;

 uint8 decimals = ERC20Decimals(_token).decimals();

 if (decimals < 18) {

 return _amount.div(10**(18 - decimals));

 }

 return _amount;

}

SOL

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

https://omniscia.io/reports/gravita-protocol-core-protocol-642b98414a1a960014621fc9/appendix/finding-types#mathematical-operations
https://github.com/Gravita-Protocol/Gravita-SmartContracts/blob/bfa97cb37dc0e2927e75b36753585140f25a26dd/contracts/Dependencies/SafetyTransfer.sol#L12-L26
https://github.com/Gravita-Protocol/Gravita-SmartContracts/blob/bfa97cb37dc0e2927e75b36753585140f25a26dd/contracts/BorrowerOperations.sol#L524-L535

We advise the code to mandate that _amount modulo (%) the divisor (i.e. 10**(18 - decimals)) equals
zero, preventing impossible deposit values from being specified.

The SafetyTransfer::decimalsCorrection function will now validate that the amount being converted is
fully divisible via a modulo (%) operator, ensuring that the code will never yield assets that are less than the
expected amount.

Recommendation:

Alleviation:

https://github.com/Gravita-Protocol/Gravita-SmartContracts/blob/5e45123d169a126a3055945373421e1bda5515b9/contracts/Dependencies/SafetyTransfer.sol#L12-L26

SortedVessels Manual Review Findings

Type Severity Location

Logical Fault SortedVessels.sol:L121-L123

The SortedVessels function will set the maxSize of an asset's linked list to the maximum of uint256
insecurely, enabling Denial-of-Service attacks to manifest.

The overall list is utilized by off-chain components as per the Gravita Finance team. As such, the impact of
this exhibit is negligible and has been downgraded to informational severity.

contracts/SortedVessels.sol

SVS-01M: Insecure Data List Size Enforcement

Description:

Impact:

Example:

if (data[_asset].maxSize == 0) {

 data[_asset].maxSize = MAX_UINT256;

}

SOL

121

122

123

https://omniscia.io/reports/gravita-protocol-core-protocol-642b98414a1a960014621fc9/appendix/finding-types#logical-fault

While the blockchain that the Gravita Protocol will be deployed in may have significantly less gas costs than
its Liquity counterpart, it still needs to apply an upper bound as regardless of the cost of executing a
transaction, there is an inherent block gas limit that needs to be respected. As such, we advise a higher
than Liquity but still sensible bound to be applied to avoid Denial-of-Service attacks.

While the MAX_UINT256 "unlimited" limit is no longer set for the maxSize variable of the list, no max size is
set and the SortedVessels::isFull function is no longer utilized by the code. The Gravita Finance team
has opted to acknowledge this exhibit as the function is purely utilized for off-chain purposes.

Recommendation:

Alleviation:

https://github.com/Gravita-Protocol/Gravita-SmartContracts/blob/5e45123d169a126a3055945373421e1bda5515b9/contracts/SortedVessels.sol#L259-L261

StabilityPool Manual Review Findings

Type Severity Location

Logical Fault StabilityPool.sol:L801

The StabilityPool::_sendGainsToDepositor function will not attempt to normalize the amount value
when transferring the asset in contrast to the rest of the codebase.

Presently, the code will misbehave if non-18 decimal assets are introduced to AdminContract which is
permitted and actually expected by some of the contracts in the system. If it is a business requirement to
support unwrapped non-18 decimal assets, this finding will be upgraded in severity to "major".

contracts/StabilityPool.sol

SPL-01M: Inexistent Normalization of Asset

Description:

Impact:

Example:

https://omniscia.io/reports/gravita-protocol-core-protocol-642b98414a1a960014621fc9/appendix/finding-types#logical-fault
https://github.com/Gravita-Protocol/Gravita-SmartContracts/blob/bfa97cb37dc0e2927e75b36753585140f25a26dd/contracts/StabilityPool.sol#L787-L808

function _sendGainsToDepositor(

 address _to,

 address[] memory assets,

 uint256[] memory amounts

) internal {

 uint256 assetsLen = assets.length;

 require(assetsLen == amounts.length, "StabilityPool: Length mismatch");

 for (uint256 i = 0; i < assetsLen; ++i) {

 uint256 amount = amounts[i];

 if (amount == 0) {

 continue;

 }

 address asset = assets[i];

 // Assumes we're internally working only with the wrapped version of ERC20 tok

 IERC20Upgradeable(asset).safeTransferFrom(address(this), _to, amount);

 }

 totalColl.amounts = _leftSubColls(totalColl, assets, amounts);

 // Reset pendingCollGains since those were all sent to the borrower

 Colls memory tempPendingCollGains;

 pendingCollGains[_to] = tempPendingCollGains;

}

SOL

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

We advise the code to be streamlined, either normalizing the amount in
StabilityPool::_sendGainsToDepositor or ensuring that only wrapped assets are introduced to the
AdminContract::addNewCollateral function by evaluating their decimals.

The decimals of newly introduced assets via AdminContract::addNewCollateral are now mandated to be
equal to DEFAULT_DECIMALS , streamlining the codebase and thus alleviating this exhibit as a result.

Recommendation:

Alleviation:

https://github.com/Gravita-Protocol/Gravita-SmartContracts/blob/bfa97cb37dc0e2927e75b36753585140f25a26dd/contracts/StabilityPool.sol#L787-L808
https://github.com/Gravita-Protocol/Gravita-SmartContracts/blob/bfa97cb37dc0e2927e75b36753585140f25a26dd/contracts/AdminContract.sol#L160-L202
https://github.com/Gravita-Protocol/Gravita-SmartContracts/blob/5e45123d169a126a3055945373421e1bda5515b9/contracts/AdminContract.sol#L160-L202

Timelock Manual Review Findings

Type Severity Location

Logical Fault Timelock.sol:L106-L125, L127-L138

Based on the implementation of the Gravita Protocol codebase, the Timelock contract is expected to be
managed by an EOA / multi-signature wallet rather than an on-chain decentralized smart contract. As such,
calls to it aren't restricted similarly to how DAOs prevent the same payload to be queued again.

It is presently possible to emit events that do not correspond to the real state of the Timelock , cancelling a
transaction that has already been executed thus breaking the guarantee that a CancelTransaction event is
meant to indicate the transaction has not been executed and has been cancelled.

contracts/Timelock.sol

TKC-01M: Inexistent Prevention of Duplicate Invocations

Description:

Impact:

Example:

https://omniscia.io/reports/gravita-protocol-core-protocol-642b98414a1a960014621fc9/appendix/finding-types#logical-fault

function cancelTransaction(

 address target,

 uint value,

 string memory signature,

 bytes memory data,

 uint eta

) public adminOnly {

 bytes32 txHash = keccak256(abi.encode(target, value, signature, data, eta));

 queuedTransactions[txHash] = false;

 emit CancelTransaction(txHash, target, value, signature, data, eta);

}

function executeTransaction(

 address target,

 uint value,

 string memory signature,

 bytes memory data,

 uint eta

) public payable adminOnly returns (bytes memory) {

 bytes32 txHash = keccak256(abi.encode(target, value, signature, data, eta));

 if (!queuedTransactions[txHash]) {

 revert Timelock__TxNoQueued();

 }

 if (getBlockTimestamp() < eta) {

 revert Timelock__TxStillLocked();

 }

 if (getBlockTimestamp() > eta + GRACE_PERIOD) {

 revert Timelock__TxExpired();

 }

 queuedTransactions[txHash] = false;

 bytes memory callData;

 if (bytes(signature).length == 0) {

 callData = data;

 } else {

 callData = abi.encodePacked(bytes4(keccak256(bytes(signature))), data);

 }

 // Execute the call

 (bool success, bytes memory returnData) = target.call{ value: value }(callData);

 if (!success) {

 revert Timelock__TxReverted();

}

SOL

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

 }

 emit ExecuteTransaction(txHash, target, value, signature, data, eta);

 return returnData;

}

172

173

174

175

176

177

We advise the code of transaction queueing and transaction cancelling to prevent execution if the
transaction is already queued or already cancelled respectively. This will prevent misleading
QueueTransaction and CancelTransaction events from being emitted, such as a transaction actually
being executed by Timelock::executeTransaction and then "cancelled" by
Timelock::cancelTransaction even though it has already been executed.

The queue status of a transaction is now sanitized in all statements that adjust it, ensuring that it solely
transitions from an unqueued to a queued state and vice versa.

Recommendation:

Alleviation:

https://github.com/Gravita-Protocol/Gravita-SmartContracts/blob/bfa97cb37dc0e2927e75b36753585140f25a26dd/contracts/Timelock.sol#L140-L177
https://github.com/Gravita-Protocol/Gravita-SmartContracts/blob/bfa97cb37dc0e2927e75b36753585140f25a26dd/contracts/Timelock.sol#L127-L138

ActivePool Code Style Findings

Type Severity Location

Gas Optimization ActivePool.sol:L105

The ActivePool::setAddresses function will invoke the OwnableUpgradeable::renounceOwnership
function which in turn will apply the onlyOwner modifier redundantly.

contracts/ActivePool.sol

APL-01C: Inefficient Renunciation of Ownership

Description:

Example:

function setAddresses(

 address _borrowerOperationsAddress,

 address _collSurplusPoolAddress,

 address _defaultPoolAddress,

 address _stabilityPoolAddress,

 address _vesselManagerAddress,

 address _vesselManagerOperationsAddress

) external initializer {

 require(!isInitialized, "Already initialized");

 isInitialized = true;

 __Ownable_init();

 __ReentrancyGuard_init();

 borrowerOperationsAddress = _borrowerOperationsAddress;

 collSurplusPool = ICollSurplusPool(_collSurplusPoolAddress);

 defaultPool = IDefaultPool(_defaultPoolAddress);

 stabilityPoolAddress = _stabilityPoolAddress;

 vesselManagerAddress = _vesselManagerAddress;

 vesselManagerOperationsAddress = _vesselManagerOperationsAddress;

 renounceOwnership();

}

SOL

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

https://omniscia.io/reports/gravita-protocol-core-protocol-642b98414a1a960014621fc9/appendix/finding-types#gas-optimization
https://github.com/Gravita-Protocol/Gravita-SmartContracts/blob/bfa97cb37dc0e2927e75b36753585140f25a26dd/contracts/ActivePool.sol#L84-L106

We advise the OwnableUpgradeable::_transferOwnership function to be utilized directly, transferring
ownership to the zero address.

Ownership of the contract is no longer renounced in the latest iteration of the codebase rendering this
exhibit inapplicable.

Recommendation:

Alleviation:

Type Severity Location

Gas Optimization ActivePool.sol:L95, L105

The ActivePool inherits the OwnableUpgradeable implementation redundantly as it initializes it within the
ActivePool::setAddresses function and consequently renounces ownership in the same call.

contracts/ActivePool.sol

APL-02C: Inexplicable Ownable Pattern

Description:

Example:

function setAddresses(

 address _borrowerOperationsAddress,

 address _collSurplusPoolAddress,

 address _defaultPoolAddress,

 address _stabilityPoolAddress,

 address _vesselManagerAddress,

 address _vesselManagerOperationsAddress

) external initializer {

 require(!isInitialized, "Already initialized");

 isInitialized = true;

 __Ownable_init();

 __ReentrancyGuard_init();

 borrowerOperationsAddress = _borrowerOperationsAddress;

 collSurplusPool = ICollSurplusPool(_collSurplusPoolAddress);

 defaultPool = IDefaultPool(_defaultPoolAddress);

 stabilityPoolAddress = _stabilityPoolAddress;

 vesselManagerAddress = _vesselManagerAddress;

 vesselManagerOperationsAddress = _vesselManagerOperationsAddress;

 renounceOwnership();

}

SOL

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

https://omniscia.io/reports/gravita-protocol-core-protocol-642b98414a1a960014621fc9/appendix/finding-types#gas-optimization
https://github.com/Gravita-Protocol/Gravita-SmartContracts/blob/bfa97cb37dc0e2927e75b36753585140f25a26dd/contracts/ActivePool.sol#L84-L106

We advise it to be removed, inheriting the Initializable implementation of OpenZeppelin instead which
is properly put in use within the contract.

While the renunciation has been removed, the OwnableUpgradeable contract is still inherited by the
ActivePool . To properly alleviate this exhibit, we advise the OwnableUpgradeable contract to be omitted
from the ActivePool entirely.

Recommendation:

Alleviation:

Type Severity Location

Gas Optimization ActivePool.sol:L91-L93

The ActivePool contract inherits the OpenZeppelin OwnableUpgradeable implementation which contains
the Initializable implementation, put in use within the ActivePool::setAddresses function. As such,
the manual isInitialized flag is redundant.

contracts/ActivePool.sol

APL-03C: Redundant Initialization Paradigm

Description:

Example:

function setAddresses(

 address _borrowerOperationsAddress,

 address _collSurplusPoolAddress,

 address _defaultPoolAddress,

 address _stabilityPoolAddress,

 address _vesselManagerAddress,

 address _vesselManagerOperationsAddress

) external initializer {

 require(!isInitialized, "Already initialized");

 isInitialized = true;

 __Ownable_init();

 __ReentrancyGuard_init();

 borrowerOperationsAddress = _borrowerOperationsAddress;

 collSurplusPool = ICollSurplusPool(_collSurplusPoolAddress);

 defaultPool = IDefaultPool(_defaultPoolAddress);

 stabilityPoolAddress = _stabilityPoolAddress;

 vesselManagerAddress = _vesselManagerAddress;

 vesselManagerOperationsAddress = _vesselManagerOperationsAddress;

 renounceOwnership();

}

SOL

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

https://omniscia.io/reports/gravita-protocol-core-protocol-642b98414a1a960014621fc9/appendix/finding-types#gas-optimization
https://github.com/Gravita-Protocol/Gravita-SmartContracts/blob/bfa97cb37dc0e2927e75b36753585140f25a26dd/contracts/ActivePool.sol#L84-L106

We advise it and its validations to be omitted from the codebase as it is ineffectual and duplicates the
purpose of the Initializable::initializer modifier.

The manual initialization methodology has been removed from the contract as advised.

Recommendation:

Alleviation:

AdminContract Code Style Findings

Type Severity Location

Gas Optimization AdminContract.sol:L294, L295, L323-L324, L338-L339, L353-L354,
L368, L371, L385-L386, L399-L400, L414, L417, L422, L425

The linked statements perform key-based lookup operations on mapping declarations from storage multiple
times for the same key redundantly.

contracts/AdminContract.sol

ACT-01C: Inefficient mapping Lookups

Description:

Example:

function setAsDefaultWithRemptionBlock(

 address _collateral,

 uint256 blockInDays

)

 external

 onlyOwner // TODO: Review if should set to controller

{

 if (blockInDays > 14) {

 blockInDays = REDEMPTION_BLOCK_DAY;

 }

 if (collateralParams[_collateral].redemptionBlock == 0) {

 collateralParams[_collateral].redemptionBlock = block.timestamp + (blockInDays

 }

 _setAsDefault(_collateral);

}

SOL

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

https://omniscia.io/reports/gravita-protocol-core-protocol-642b98414a1a960014621fc9/appendix/finding-types#gas-optimization

As the lookups internally perform an expensive keccak256 operation, we advise the lookups to be cached
wherever possible to a single local declaration that either holds the value of the mapping in case of primitive
types or holds a storage pointer to the struct contained.

All inefficient mapping lookups have been significantly optimized per our recommendation, rendering this
exhibit fully alleviated.

Recommendation:

Alleviation:

Type Severity Location

Code Style AdminContract.sol:L144

The linked require check has no error message explicitly defined.

contracts/AdminContract.sol

ACT-02C: Inexistent Error Message

Description:

Example:

require(!isInitialized);

SOL

144

https://omniscia.io/reports/gravita-protocol-core-protocol-642b98414a1a960014621fc9/appendix/finding-types#code-style

We advise one to be set so to increase the legibility of the codebase and aid in validating the require
check's condition.

An error message has been properly introduced to the referenced require check as advised.

Recommendation:

Alleviation:

Type Severity Location

Gas Optimization AdminContract.sol:L214, L245

The linked for loops increment / decrement their iterator "safely" due to Solidity's built - in safe arithmetics
(post- 0.8.X).

contracts/AdminContract.sol

ACT-03C: Loop Iterator Optimizations

Description:

Example:

for (uint256 i = 0; i < _collaterals.length; i++) {

SOL

214

https://omniscia.io/reports/gravita-protocol-core-protocol-642b98414a1a960014621fc9/appendix/finding-types#gas-optimization

We advise the increment / decrement operations to be performed in an unchecked code block as the last
statement within each for loop to optimize their execution cost.

The loop iterator increments have been optimized as advised, however, their i++ counterpart is utilized
instead of ++i . We advise the latter to be set in use as it is more optimal than the present code.

Recommendation:

Alleviation:

Type Severity Location

Code Style AdminContract.sol:L294-L295

The redemptionBlock of the collateralParams of a given asset does not represent blocks and instead
represents time as evidenced in AdminContract::setAsDefaultWithRemptionBlock and
VesselManagerOperations::_validateRedemptionRequirements .

contracts/AdminContract.sol

ACT-04C: Misleading Variable Name

Description:

Example:

function setAsDefaultWithRemptionBlock(

 address _collateral,

 uint256 blockInDays

)

 external

 onlyOwner // TODO: Review if should set to controller

{

 if (blockInDays > 14) {

 blockInDays = REDEMPTION_BLOCK_DAY;

 }

 if (collateralParams[_collateral].redemptionBlock == 0) {

 collateralParams[_collateral].redemptionBlock = block.timestamp + (blockInDays

 }

 _setAsDefault(_collateral);

}

SOL

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

https://omniscia.io/reports/gravita-protocol-core-protocol-642b98414a1a960014621fc9/appendix/finding-types#code-style
https://github.com/Gravita-Protocol/Gravita-SmartContracts/blob/bfa97cb37dc0e2927e75b36753585140f25a26dd/contracts/AdminContract.sol#L283-L299
https://github.com/Gravita-Protocol/Gravita-SmartContracts/blob/bfa97cb37dc0e2927e75b36753585140f25a26dd/contracts/VesselManagerOperations.sol#L911-L938

We advise the data point to be aptly renamed to illustrate that it represents time rather than blocks, avoiding
potential confusion when reading the codebase.

The redemptionBlock variable was renamed to redemptionBlockTimestamp , illustrating the variable's
purpose in a clearer way.

Recommendation:

Alleviation:

BorrowerOperations Code Style Findings

Type Severity Location

Gas Optimization BorrowerOperations.sol:L582

The BorrowerOperations::_requireNonZeroAdjustment function will evaluate whether the msg.value is
non-zero, however, such a case is impossible in the codebase as the functions it is invoked in are not
payable .

contracts/BorrowerOperations.sol

BOS-01C: Ineffectual Native Value Check

Description:

Example:

function _requireNonZeroAdjustment(

 uint256 _collWithdrawal,

 uint256 _debtTokenChange,

 uint256 _assetSent

) internal view {

 require(

 msg.value != 0 || _collWithdrawal != 0 || _debtTokenChange != 0 || _assetSent

 "BorrowerOps: There must be either a collateral change or a debt change"

);

}

SOL

576

577

578

579

580

581

582

583

584

585

https://omniscia.io/reports/gravita-protocol-core-protocol-642b98414a1a960014621fc9/appendix/finding-types#gas-optimization
https://github.com/Gravita-Protocol/Gravita-SmartContracts/blob/bfa97cb37dc0e2927e75b36753585140f25a26dd/contracts/BorrowerOperations.sol#L576-L585

We advise this part of the conditional to be safely omitted, optimizing its gas cost.

The msg.value evaluation was removed from the function, optimizing its gas cost and permitting it to be
set to pure .

Recommendation:

Alleviation:

Type Severity Location

Gas Optimization BorrowerOperations.sol:L291

The BorrowerOperations::_adjustVessel function will mandate that the msg.value is zero, however, it is
impossible to be otherwise due to the function's invocation in non-payable contexts.

contracts/BorrowerOperations.sol

BOS-02C: Redundant Native Value Check

Description:

Example:

require(msg.value == 0, "BorrowerOps: msg.value must be zero");

SOL

291

https://omniscia.io/reports/gravita-protocol-core-protocol-642b98414a1a960014621fc9/appendix/finding-types#gas-optimization
https://github.com/Gravita-Protocol/Gravita-SmartContracts/blob/bfa97cb37dc0e2927e75b36753585140f25a26dd/contracts/BorrowerOperations.sol#L281-L389

We advise the referenced require check to be safely omitted from the code, optimizing its gas cost.

The redundant require check has been safely removed from the codebase as advised.

Recommendation:

Alleviation:

Type Severity Location

Code Style BorrowerOperations.sol:L124, L292

The linked declaration styles of the referenced structs are using index-based argument initialization.

contracts/BorrowerOperations.sol

BOS-03C: Suboptimal Struct Declaration Styles

Description:

Example:

ContractsCache memory contractsCache = ContractsCache(vesselManager, adminContract.act

SOL

124

https://omniscia.io/reports/gravita-protocol-core-protocol-642b98414a1a960014621fc9/appendix/finding-types#code-style

We advise the key-value declaration format to be utilized instead in each instance, greatly increasing the
legibility of the codebase.

The key-value declaration style is now in use in both referenced instances of the exhibit, addressing it in full.

Recommendation:

Alleviation:

CollSurplusPool Code Style Findings

Type Severity Location

Gas Optimization CollSurplusPool.sol:L48

The CollSurplusPool::setAddresses function will invoke the
OwnableUpgradeable::renounceOwnership function which in turn will apply the onlyOwner modifier
redundantly.

contracts/CollSurplusPool.sol

CSP-01C: Inefficient Renunciation of Ownership

Description:

Example:

function setAddresses(

 address _activePoolAddress,

 address _borrowerOperationsAddress,

 address _vesselManagerAddress,

 address _vesselManagerOperationsAddress

) external override initializer {

 require(!isInitialized, "Already initialized");

 isInitialized = true;

 __Ownable_init();

 activePoolAddress = _activePoolAddress;

 borrowerOperationsAddress = _borrowerOperationsAddress;

 vesselManagerAddress = _vesselManagerAddress;

 vesselManagerOperationsAddress = _vesselManagerOperationsAddress;

 renounceOwnership();

}

SOL

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

https://omniscia.io/reports/gravita-protocol-core-protocol-642b98414a1a960014621fc9/appendix/finding-types#gas-optimization
https://github.com/Gravita-Protocol/Gravita-SmartContracts/blob/bfa97cb37dc0e2927e75b36753585140f25a26dd/contracts/CollSurplusPool.sol#L32-L49

We advise the OwnableUpgradeable::_transferOwnership function to be utilized directly, transferring
ownership to the zero address.

Ownership of the contract is no longer renounced in the latest iteration of the codebase rendering this
exhibit inapplicable.

Recommendation:

Alleviation:

Type Severity Location

Gas Optimization CollSurplusPool.sol:L70, L71, L78, L80, L84

The linked statements perform key-based lookup operations on mapping declarations from storage multiple
times for the same key redundantly.

contracts/CollSurplusPool.sol

CSP-02C: Inefficient mapping Lookups

Description:

Example:

function accountSurplus(

 address _asset,

 address _account,

 uint256 _amount

) external override {

 _requireCallerIsVesselManager();

 uint256 newAmount = userBalances[_account][_asset].add(_amount);

 userBalances[_account][_asset] = newAmount;

 emit CollBalanceUpdated(_account, newAmount);

}

SOL

63

64

65

66

67

68

69

70

71

72

73

74

https://omniscia.io/reports/gravita-protocol-core-protocol-642b98414a1a960014621fc9/appendix/finding-types#gas-optimization

As the lookups internally perform an expensive keccak256 operation, we advise the lookups to be cached
wherever possible to a single local declaration that either holds the value of the mapping in case of primitive
types or holds a storage pointer to the struct contained.

All inefficient mapping lookups have been significantly optimized per our recommendation, rendering this
exhibit fully alleviated.

Recommendation:

Alleviation:

Type Severity Location

Gas Optimization CollSurplusPool.sol:L41, L48

The CollSurplusPool inherits the OwnableUpgradeable implementation redundantly as it initializes it
within the CollSurplusPool::setAddresses function and consequently renounces ownership in the same
call.

contracts/CollSurplusPool.sol

CSP-03C: Inexplicable Ownable Pattern

Description:

Example:

function setAddresses(

 address _activePoolAddress,

 address _borrowerOperationsAddress,

 address _vesselManagerAddress,

 address _vesselManagerOperationsAddress

) external override initializer {

 require(!isInitialized, "Already initialized");

 isInitialized = true;

 __Ownable_init();

 activePoolAddress = _activePoolAddress;

 borrowerOperationsAddress = _borrowerOperationsAddress;

 vesselManagerAddress = _vesselManagerAddress;

 vesselManagerOperationsAddress = _vesselManagerOperationsAddress;

 renounceOwnership();

}

SOL

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

https://omniscia.io/reports/gravita-protocol-core-protocol-642b98414a1a960014621fc9/appendix/finding-types#gas-optimization
https://github.com/Gravita-Protocol/Gravita-SmartContracts/blob/bfa97cb37dc0e2927e75b36753585140f25a26dd/contracts/CollSurplusPool.sol#L32-L49

We advise it to be removed, inheriting the Initializable implementation of OpenZeppelin instead which
is properly put in use within the contract.

While the renunciation has been removed, the OwnableUpgradeable contract is still inherited by the
CollSurplusPool . To properly alleviate this exhibit, we advise the OwnableUpgradeable contract to be
omitted from the CollSurplusPool entirely.

Recommendation:

Alleviation:

Type Severity Location

Gas Optimization CollSurplusPool.sol:L23, L37-L39

The CollSurplusPool contract inherits the OpenZeppelin OwnableUpgradeable implementation which
contains the Initializable implementation, put in use within the CollSurplusPool::setAddresses
function. As such, the manual isInitialized flag is redundant.

contracts/CollSurplusPool.sol

CSP-04C: Redundant Initialization Paradigm

Description:

Example:

bool public isInitialized;

// deposited ether tracker

mapping(address => uint256) balances;

// Collateral surplus claimable by vessel owners

mapping(address => mapping(address => uint256)) internal userBalances;

// --- Contract setters ---

function setAddresses(

 address _activePoolAddress,

 address _borrowerOperationsAddress,

 address _vesselManagerAddress,

 address _vesselManagerOperationsAddress

) external override initializer {

 require(!isInitialized, "Already initialized");

 isInitialized = true;

SOL

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

https://omniscia.io/reports/gravita-protocol-core-protocol-642b98414a1a960014621fc9/appendix/finding-types#gas-optimization
https://github.com/Gravita-Protocol/Gravita-SmartContracts/blob/bfa97cb37dc0e2927e75b36753585140f25a26dd/contracts/CollSurplusPool.sol#L32-L49

We advise it and its validations to be omitted from the codebase as it is ineffectual and duplicates the
purpose of the Initializable::initializer modifier.

The manual initialization methodology has been removed from the contract as advised.

Recommendation:

Alleviation:

DebtToken Code Style Findings

Type Severity Location

Gas Optimization DebtToken.sol:L22

The linked variable is assigned to only once during the contract's constructor .

contracts/DebtToken.sol

DTN-01C: Variable Mutability Specifier (Immutable)

Description:

Example:

constructor(

 address _vesselManagerAddress,

 address _stabilityPoolAddress,

 address _borrowerOperationsAddress,

 address _timelockAddress

) ERC20("GRAI", "GRAI") {

 vesselManagerAddress = _vesselManagerAddress;

 timelockAddress = _timelockAddress;

 stabilityPool = IStabilityPool(_stabilityPoolAddress);

 borrowerOperationsAddress = _borrowerOperationsAddress;

}

SOL

42

43

44

45

46

47

48

49

50

51

52

https://omniscia.io/reports/gravita-protocol-core-protocol-642b98414a1a960014621fc9/appendix/finding-types#gas-optimization

We advise it to be set as immutable greatly optimizing its read-access gas cost.

The timelockAddress has been set as immutable , greatly optimizing its read-access gas cost.

Recommendation:

Alleviation:

DefaultPool Code Style Findings

Type Severity Location

Gas Optimization DefaultPool.sol:L48

The DefaultPool::setAddresses function will invoke the OwnableUpgradeable::renounceOwnership
function which in turn will apply the onlyOwner modifier redundantly.

contracts/DefaultPool.sol

DPL-01C: Inefficient Renunciation of Ownership

Description:

Example:

function setAddresses(address _vesselManagerAddress, address _activePoolAddress)

 external

 initializer

{

 require(!isInitialized, "Already initialized");

 isInitialized = true;

 __Ownable_init();

 vesselManagerAddress = _vesselManagerAddress;

 activePoolAddress = _activePoolAddress;

 renounceOwnership();

}

SOL

36

37

38

39

40

41

42

43

44

45

46

47

48

49

https://omniscia.io/reports/gravita-protocol-core-protocol-642b98414a1a960014621fc9/appendix/finding-types#gas-optimization
https://github.com/Gravita-Protocol/Gravita-SmartContracts/blob/bfa97cb37dc0e2927e75b36753585140f25a26dd/contracts/DefaultPool.sol#L36-L49

We advise the OwnableUpgradeable::_transferOwnership function to be utilized directly, transferring
ownership to the zero address.

Ownership of the contract is no longer renounced in the latest iteration of the codebase rendering this
exhibit inapplicable.

Recommendation:

Alleviation:

Type Severity Location

Gas Optimization DefaultPool.sol:L73, L79, L88, L89, L97, L98

The linked statements perform key-based lookup operations on mapping declarations from storage multiple
times for the same key redundantly.

contracts/DefaultPool.sol

DPL-02C: Inefficient mapping Lookups

Description:

Example:

assetsBalances[_asset] = assetsBalances[_asset].sub(_amount);

 IERC20Upgradeable(_asset).safeTransfer(activePool, safetyTransferAmount);

 IDeposit(activePool).receivedERC20(_asset, _amount);

emit DefaultPoolAssetBalanceUpdated(_asset, assetsBalances[_asset]);

SOL

73

74

75

76

77

78

79

https://omniscia.io/reports/gravita-protocol-core-protocol-642b98414a1a960014621fc9/appendix/finding-types#gas-optimization

As the lookups internally perform an expensive keccak256 operation, we advise the lookups to be cached
wherever possible to a single local declaration that either holds the value of the mapping in case of primitive
types or holds a storage pointer to the struct contained.

All inefficient mapping lookups have been significantly optimized per our recommendation, rendering this
exhibit fully alleviated.

Recommendation:

Alleviation:

Type Severity Location

Gas Optimization DefaultPool.sol:L43, L48

The DefaultPool inherits the OwnableUpgradeable implementation redundantly as it initializes it within
the DefaultPool::setAddresses function and consequently renounces ownership in the same call.

contracts/DefaultPool.sol

DPL-03C: Inexplicable Ownable Pattern

Description:

Example:

function setAddresses(address _vesselManagerAddress, address _activePoolAddress)

 external

 initializer

{

 require(!isInitialized, "Already initialized");

 isInitialized = true;

 __Ownable_init();

 vesselManagerAddress = _vesselManagerAddress;

 activePoolAddress = _activePoolAddress;

 renounceOwnership();

}

SOL

36

37

38

39

40

41

42

43

44

45

46

47

48

49

https://omniscia.io/reports/gravita-protocol-core-protocol-642b98414a1a960014621fc9/appendix/finding-types#gas-optimization
https://github.com/Gravita-Protocol/Gravita-SmartContracts/blob/bfa97cb37dc0e2927e75b36753585140f25a26dd/contracts/DefaultPool.sol#L36-L49

We advise it to be removed, inheriting the Initializable implementation of OpenZeppelin instead which
is properly put in use within the contract.

While the renunciation has been removed, the OwnableUpgradeable contract is still inherited by the
DefaultPool . To properly alleviate this exhibit, we advise the OwnableUpgradeable contract to be omitted
from the DefaultPool entirely.

Recommendation:

Alleviation:

Type Severity Location

Gas Optimization DefaultPool.sol:L29, L38, L40-L41

The DefaultPool contract inherits the OpenZeppelin OwnableUpgradeable implementation which contains
the Initializable implementation, put in use within the DefaultPool::setAddresses function. As such,
the manual isInitialized flag is redundant.

contracts/DefaultPool.sol

DPL-04C: Redundant Initialization Paradigm

Description:

Example:

bool public isInitialized;

mapping(address => uint256) internal assetsBalances;

mapping(address => uint256) internal debtTokenBalances;

// --- Dependency setters ---

function setAddresses(address _vesselManagerAddress, address _activePoolAddress)

 external

 initializer

{

 require(!isInitialized, "Already initialized");

 isInitialized = true;

SOL

29

30

31

32

33

34

35

36

37

38

39

40

41

https://omniscia.io/reports/gravita-protocol-core-protocol-642b98414a1a960014621fc9/appendix/finding-types#gas-optimization
https://github.com/Gravita-Protocol/Gravita-SmartContracts/blob/bfa97cb37dc0e2927e75b36753585140f25a26dd/contracts/DefaultPool.sol#L36-L49

We advise it and its validations to be omitted from the codebase as it is ineffectual and duplicates the
purpose of the Initializable::initializer modifier.

The manual initialization methodology has been removed from the contract as advised.

Recommendation:

Alleviation:

ERC20Decimals Code Style Findings

Type Severity Location

Code Style ERC20Decimals.sol:L5

The referenced interface does not conform to the IXXX naming convention.

contracts/Dependencies/ERC20Decimals.sol

ERD-01C: Non-Standard Interface Name

Description:

Example:

interface ERC20Decimals {

SOL

5

https://omniscia.io/reports/gravita-protocol-core-protocol-642b98414a1a960014621fc9/appendix/finding-types#code-style

We advise the ERC20Decimals interface and file to be aptly renamed to IERC20Decimals , properly
illustrating its purpose.

The interface and file have both been aptly renamed with an I prefixed, signalling that they are meant to
represent an interface rather than a contract implementation.

Recommendation:

Alleviation:

ERC20Permit Code Style Findings

Type Severity Location

Gas Optimization ERC20Permit.sol:L96, L104

The linked statements perform key-based lookup operations on mapping declarations from storage multiple
times for the same key redundantly.

contracts/Dependencies/ERC20Permit.sol

ERC-01C: Inefficient mapping Lookups

Description:

Example:

bytes32 hashStruct = keccak256(

 abi.encode(PERMIT_TYPEHASH, owner, spender, amount, _nonces[owner].current(), dead

);

bytes32 _hash = keccak256(abi.encodePacked(uint16(0x1901), DOMAIN_SEPARATOR, hashStruc

address signer = ecrecover(_hash, v, r, s);

require(signer != address(0) && signer == owner, "ERC20Permit: Invalid signature");

_nonces[owner].increment();

SOL

95

96

97

98

99

100

101

102

103

104

https://omniscia.io/reports/gravita-protocol-core-protocol-642b98414a1a960014621fc9/appendix/finding-types#gas-optimization

As the lookups internally perform an expensive keccak256 operation, we advise the lookups to be cached
wherever possible to a single local declaration that either holds the value of the mapping in case of primitive
types or holds a storage pointer to the struct contained.

All inefficient mapping lookups have been significantly optimized per our recommendation, rendering this
exhibit fully alleviated.

Recommendation:

Alleviation:

Type Severity Location

Code Style ERC20Permit.sol:L7, L50

The referenced file contains multiple top-level declarations that decrease the legibility of the codebase.

contracts/Dependencies/ERC20Permit.sol

ERC-02C: Multiple Top-Level Declarations

Description:

Example:

https://omniscia.io/reports/gravita-protocol-core-protocol-642b98414a1a960014621fc9/appendix/finding-types#code-style

interface IERC2612Permit {

 /**

 * @dev Sets `amount` as the allowance of `spender` over `owner`'s tokens,

 * given `owner`'s signed approval.

 *

 * IMPORTANT: The same issues {IERC20-approve} has related to transaction

 * ordering also apply here.

 *

 * Emits an {Approval} event.

 *

 * Requirements:

 *

 * - `owner` cannot be the zero address.

 * - `spender` cannot be the zero address.

 * - `deadline` must be a timestamp in the future.

 * - `v`, `r` and `s` must be a valid `secp256k1` signature from `owner`

 * over the EIP712-formatted function arguments.

 * - the signature must use ``owner``'s current nonce (see {nonces}).

 *

 * For more information on the signature format, see the

 * https://eips.ethereum.org/EIPS/eip-2612#specification[relevant EIP

 * section].

 */

 function permit(

 address owner,

 address spender,

 uint256 amount,

 uint256 deadline,

 uint8 v,

 bytes32 r,

 bytes32 s

) external;

 /**

 * @dev Returns the current ERC2612 nonce for `owner`. This value must be

 * included whenever a signature is generated for {permit}.

 *

 * Every successful call to {permit} increases ``owner``'s nonce by one. This

 * prevents a signature from being used multiple times.

 */

 function nonces(address owner) external view returns (uint256);

}

abstract contract ERC20Permit is ERC20, IERC2612Permit {

SOL

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

We advise all highlighted top-level declarations to be split into their respective code files, avoiding
unnecessary imports as well as increasing the legibility of the codebase.

The IERC2612Permit interface declaration has been relocated to its dedicated file and is now imported by
the codebase, optimizing the project's structure.

Recommendation:

Alleviation:

Type Severity Location

Code Style ERC20Permit.sol:L62-L65, L115-L119

The referenced assembly block within the contract's constructor yields the chainid of the execution
context, however, the same value can be extracted without an assembly block by accessing block.chainid
. Additionally, the ERC20Permit::chainId function is redundant as the value can be acquired via the same
syntax in other contexts.

contracts/Dependencies/ERC20Permit.sol

ERC-03C: Redundant Low-Level Assembly Blocks

Description:

Example:

uint256 chainID;

assembly {

 chainID := chainid()

}

SOL

62

63

64

65

https://omniscia.io/reports/gravita-protocol-core-protocol-642b98414a1a960014621fc9/appendix/finding-types#code-style
https://github.com/Gravita-Protocol/Gravita-SmartContracts/blob/bfa97cb37dc0e2927e75b36753585140f25a26dd/contracts/Dependencies/ERC20Permit.sol#L115-L119

We advise the block.chainid syntax to be utilized, standardizing the codebase's style and rendering the
ERC20Permit::chainId function redundant.

The block.chainid variable is now utilized in the ERC20Permit::constructor as advised.

Recommendation:

Alleviation:

https://github.com/Gravita-Protocol/Gravita-SmartContracts/blob/bfa97cb37dc0e2927e75b36753585140f25a26dd/contracts/Dependencies/ERC20Permit.sol#L115-L119
https://github.com/Gravita-Protocol/Gravita-SmartContracts/blob/5e45123d169a126a3055945373421e1bda5515b9/contracts/Dependencies/ERC20Permit.sol#L61-L78

Type Severity Location

Gas Optimization ERC20Permit.sol:L59, L67

The linked variable is assigned to only once during the contract's constructor .

contracts/Dependencies/ERC20Permit.sol

ERC-04C: Variable Mutability Specifier (Immutable)

Description:

Example:

bytes32 public DOMAIN_SEPARATOR;

constructor() {

 uint256 chainID;

 assembly {

 chainID := chainid()

 }

 DOMAIN_SEPARATOR = keccak256(

 abi.encode(

 keccak256(

 "EIP712Domain(string name,string version,uint256 chainId,address verif

),

 keccak256(bytes(name())),

 keccak256(bytes("1")), // Version

 chainID,

 address(this)

)

);

}

SOL

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

https://omniscia.io/reports/gravita-protocol-core-protocol-642b98414a1a960014621fc9/appendix/finding-types#gas-optimization

We advise it to be set as immutable greatly optimizing its read-access gas cost.

The DOMAIN_SEPARATOR variable has been set as immutable , greatly optimizing its read-access gas cost.

Recommendation:

Alleviation:

FeeCollector Code Style Findings

Type Severity Location

Gas Optimization FeeCollector.sol:L182, L198, L207-L208

The linked statements perform key-based lookup operations on mapping declarations from storage multiple
times for the same key redundantly.

contracts/FeeCollector.sol

FCR-01C: Inefficient mapping Lookups

Description:

Example:

https://omniscia.io/reports/gravita-protocol-core-protocol-642b98414a1a960014621fc9/appendix/finding-types#gas-optimization

function _decreaseDebt(

 address _borrower,

 address _asset,

 uint256 _paybackFraction

) internal {

 uint256 NOW = block.timestamp;

 require(_paybackFraction <= 1 ether, "Payback fraction cannot be higher than 1 (@

 require(_paybackFraction > 0, "Payback fraction cannot be zero");

 FeeRecord memory mRecord = feeRecords[_borrower][_asset];

 if (mRecord.amount == 0) {

 // console.log(" decreaseDebt() :: no records found");

 return;

 }

 if (mRecord.to < NOW) {

 // console.log(" decreaseDebt() :: record is expired");

 _closeExpiredOrLiquidatedFeeRecord(_borrower, _asset, mRecord.amount);

 } else {

 // collect expired refund

 uint256 expiredAmount = _calcExpiredAmount(mRecord.from, mRecord.to, mRecord.a

 _collectFee(_borrower, _asset, expiredAmount);

 if (_paybackFraction == 1e18) {

 // full payback

 uint256 refundAmount = mRecord.amount - expiredAmount;

 _refundFee(_borrower, _asset, refundAmount);

 delete feeRecords[_borrower][_asset];

 emit FeeRecordUpdated(_borrower, _asset, NOW, 0, 0);

 // console.log("^^^ EVENT FeeRecordUpdated(%s, 0, 0)", NOW);

 } else {

 // refund amount proportional to the payment

 uint256 refundAmount = ((mRecord.amount - expiredAmount) * _paybackFractio

 // console.log(" decreaseDebt() :: %s = refund", f(refundAmount));

 _refundFee(_borrower, _asset, refundAmount);

 uint256 updatedAmount = mRecord.amount - expiredAmount - refundAmount;

 feeRecords[_borrower][_asset].amount = updatedAmount;

 feeRecords[_borrower][_asset].from = NOW;

 // console.log(" decreaseDebt() :: %s left", f(updatedAmount));

 emit FeeRecordUpdated(_borrower, _asset, NOW, mRecord.to, updatedAmount);

 // console.log("^^^ EVENT FeeRecordUpdated(%s, %s, %s)", NOW, mRecord.to,

 }

 }

}

SOL

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

As the lookups internally perform an expensive keccak256 operation, we advise the lookups to be cached
wherever possible to a single local declaration that either holds the value of the mapping in case of primitive
types or holds a storage pointer to the struct contained.

All inefficient mapping lookups have been significantly optimized per our recommendation, rendering this
exhibit fully alleviated.

Recommendation:

Alleviation:

Type Severity Location

Code Style FeeCollector.sol:L50, L51

The linked require checks have no error messages explicitly defined.

contracts/FeeCollector.sol

FCR-02C: Inexistent Error Messages

Description:

Example:

require(!isInitialized);

SOL

50

https://omniscia.io/reports/gravita-protocol-core-protocol-642b98414a1a960014621fc9/appendix/finding-types#code-style

We advise each to be set so to increase the legibility of the codebase and aid in validating the require
checks' conditions.

While the first require check is no longer present in the codebase, the second require check has not had
an explicit error message introduced thereby rendering this exhibit unaddressed. Given that it pertains a
style-related exhibit, we will consider this exhibit acknowledged.

Recommendation:

Alleviation:

Type Severity Location

Gas Optimization FeeCollector.sol:L364-L388

The FeeCollector::f function is meant to be removed from the codebase as per its TODO comment.

contracts/FeeCollector.sol

FCR-03C: Leftover Test Code

Description:

Example:

/**

 * TEMPORARY formatting method to help with debugging

 * TODO remove for production deployment

 */

function f(uint256 value) internal pure returns (string memory) {

 string memory sInput = Strings.toString(value);

 bytes memory bInput = bytes(sInput);

 uint256 len = bInput.length > 18 ? bInput.length + 1 : 20;

 string memory sResult = new string(len);

 bytes memory bResult = bytes(sResult);

 if (bInput.length <= 18) {

 bResult[0] = "0";

 bResult[1] = ".";

 for (uint256 i = 1; i <= 18 - bInput.length; i++) bResult[i + 1] = "0";

 for (uint256 i = bInput.length; i > 0; i--) bResult[--len] = bInput[i - 1];

 } else {

 uint256 c = 0;

 uint256 i = bInput.length;

 while (i > 0) {

 bResult[--len] = bInput[--i];

 if (++c == 18) bResult[--len] = ".";

 }

 }

 return string(bResult);

}

SOL

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

https://omniscia.io/reports/gravita-protocol-core-protocol-642b98414a1a960014621fc9/appendix/finding-types#gas-optimization
https://github.com/Gravita-Protocol/Gravita-SmartContracts/blob/bfa97cb37dc0e2927e75b36753585140f25a26dd/contracts/FeeCollector.sol#L368-L388

We advise this to be done so, bringing the code closer to a production deployment.

The leftover test code has been safely removed from the codebase as advised.

Recommendation:

Alleviation:

Type Severity Location

Gas Optimization FeeCollector.sol:L142

The linked for loop increments / decrements the iterator "safely" due to Solidity's built-in safe arithmetics
(post- 0.8.X).

contracts/FeeCollector.sol

FCR-04C: Loop Iterator Optimization

Description:

Example:

for (uint256 i = 0; i < borrowersLength; ++i) {

SOL

142

https://omniscia.io/reports/gravita-protocol-core-protocol-642b98414a1a960014621fc9/appendix/finding-types#gas-optimization

We advise the increment / decrement operation to be performed in an unchecked code block as the last
statement within the for loop to optimize its execution cost.

The loop iterator increment has been optimized as advised, however, its i++ counterpart is utilized instead
of ++i . We advise the latter to be set in use as it is more optimal than the present code.

Recommendation:

Alleviation:

Type Severity Location

Gas Optimization FeeCollector.sol:L49, L50, L62

The FeeCollector contract inherits the OpenZeppelin OwnableUpgradeable implementation which
contains the Initializable implementation, put in use within the FeeCollector::setAddresses
function. As such, the manual isInitialized flag is redundant.

contracts/FeeCollector.sol

FCR-05C: Redundant Initialization Paradigm

Description:

Example:

function setAddresses(

 address _borrowerOperationsAddress,

 address _vesselManagerAddress,

 address _grvtStakingAddress,

 address _debtTokenAddress,

 address _treasuryAddress,

 bool _routeToGRVTStaking

) external initializer {

 require(!isInitialized);

 require(_treasuryAddress != address(0));

 borrowerOperationsAddress = _borrowerOperationsAddress;

 vesselManagerAddress = _vesselManagerAddress;

 grvtStaking = IGRVTStaking(_grvtStakingAddress);

 debtTokenAddress = _debtTokenAddress;

 treasuryAddress = _treasuryAddress;

 routeToGRVTStaking = _routeToGRVTStaking;

 if (_routeToGRVTStaking && address(grvtStaking) == address(0)) {

 revert FeeCollector__InvalidGRVTStakingAddress();

 }

 __Ownable_init();

 isInitialized = true;

}

SOL

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

Recommendation:

https://omniscia.io/reports/gravita-protocol-core-protocol-642b98414a1a960014621fc9/appendix/finding-types#gas-optimization
https://github.com/Gravita-Protocol/Gravita-SmartContracts/blob/bfa97cb37dc0e2927e75b36753585140f25a26dd/contracts/FeeCollector.sol#L42-L63

We advise it and its validations to be omitted from the codebase as it is ineffectual and duplicates the
purpose of the Initializable::initializer modifier.

The manual initialization methodology has been removed from the contract as advised.

eco e dat o :

Alleviation:

GravitaBase Code Style Findings

Type Severity Location

Gas Optimization GravitaBase.sol:L89-L91

The GravitaBase::_revertWrongFuncCaller function remains unutilized in the codebase.

contracts/Dependencies/GravitaBase.sol

GBE-01C: Unused Function Declaration

Description:

Example:

function _revertWrongFuncCaller() internal pure {

 revert("WFC");

}

SOL

89

90

91

https://omniscia.io/reports/gravita-protocol-core-protocol-642b98414a1a960014621fc9/appendix/finding-types#gas-optimization
https://github.com/Gravita-Protocol/Gravita-SmartContracts/blob/bfa97cb37dc0e2927e75b36753585140f25a26dd/contracts/Dependencies/GravitaBase.sol#L89-L91

We advise it to be safely omitted, reducing the bytecode size of the contract.

The unutilized GravitaBase::_revertWrongFuncCaller function has been safely removed from the
codebase as advised.

Recommendation:

Alleviation:

https://github.com/Gravita-Protocol/Gravita-SmartContracts/blob/5e45123d169a126a3055945373421e1bda5515b9/contracts/Dependencies/GravitaBase.sol#L89-L91

GravitaMath Code Style Findings

Type Severity Location

Code Style GravitaMath.sol:L101

The GravitaMath::_computeNominalCR function will yield a value of 2 ** 256 - 1 , representing the
maximum value of a uint256 variable, when an "infinite" collateral ratio is meant to be yielded by it.

contracts/Dependencies/GravitaMath.sol

GMH-01C: Illegible Representation of Value Literal

Description:

Example:

https://omniscia.io/reports/gravita-protocol-core-protocol-642b98414a1a960014621fc9/appendix/finding-types#code-style
https://github.com/Gravita-Protocol/Gravita-SmartContracts/blob/bfa97cb37dc0e2927e75b36753585140f25a26dd/contracts/Dependencies/GravitaMath.sol#L94-L103

function _computeNominalCR(uint256 _coll, uint256 _debt) internal pure returns (uint25

 if (_debt > 0) {

 return _coll.mul(NICR_PRECISION).div(_debt);

 }

 // Return the maximal value for uint256 if the Vessel has a debt of 0. Represents

 else {

 // if (_debt == 0)

 return 2 ** 256 - 1;

 }

}

function _computeCR(

 uint256 _coll,

 uint256 _debt,

 uint256 _price

) internal pure returns (uint256) {

 if (_debt > 0) {

 uint256 newCollRatio = _coll.mul(_price).div(_debt);

 return newCollRatio;

 }

 // Return the maximal value for uint256 if the Vessel has a debt of 0. Represents

 else {

 // if (_debt == 0)

 return type(uint256).max;

 }

}

SOL

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

We advise the same syntax as GravitaMath::_computeCR to be used, yielding type(uint256).max and
increasing the legibility of the codebase.

The representation of the value literal has been standardized in the code utilizing type(uint256).max as
advised.

Recommendation:

Alleviation:

https://github.com/Gravita-Protocol/Gravita-SmartContracts/blob/bfa97cb37dc0e2927e75b36753585140f25a26dd/contracts/Dependencies/GravitaMath.sol#L105-L120

Type Severity Location

Code Style GravitaMath.sol:L62, L63

The linked value literal is repeated across the codebase multiple times.

contracts/Dependencies/GravitaMath.sol

GMH-02C: Repetitive Value Literal

Description:

Example:

if (_minutes > 525600000) {

SOL

62

https://omniscia.io/reports/gravita-protocol-core-protocol-642b98414a1a960014621fc9/appendix/finding-types#code-style

We advise it to be set to a constant variable instead optimizing the legibility of the codebase.

The referenced repetitive value literal has been relocated to a constant variable declaration labelled
EXPONENT_CAP , optimizing the legibility of the codebase.

Recommendation:

Alleviation:

PoolBase Code Style Findings

Type Severity Location

Gas Optimization PoolBase.sol:L43-L68

The PoolBase::_leftSumColls function is meant to merge whatever pending gains are denoted in
_tokens and _amounts to the _coll1 data entry, however, it does so significantly inefficiently. The same
inefficiency is observed in the PoolBase::_leftSubColls function.

contracts/Dependencies/PoolBase.sol

PBE-01C: Significantly Inefficient Merging of Pending Gains /
Distributed Funds

Description:

Example:

https://omniscia.io/reports/gravita-protocol-core-protocol-642b98414a1a960014621fc9/appendix/finding-types#gas-optimization
https://github.com/Gravita-Protocol/Gravita-SmartContracts/blob/bfa97cb37dc0e2927e75b36753585140f25a26dd/contracts/Dependencies/PoolBase.sol#L33-L71
https://github.com/Gravita-Protocol/Gravita-SmartContracts/blob/bfa97cb37dc0e2927e75b36753585140f25a26dd/contracts/Dependencies/PoolBase.sol#L82-L120

function _leftSumColls(

 Colls memory _coll1,

 address[] memory _tokens,

 uint256[] memory _amounts

) internal pure returns (uint256[] memory) {

 // If nothing on the right side then return the original.

 if (_amounts.length == 0) {

 return _coll1.amounts;

 }

 uint256 coll1Len = _coll1.amounts.length;

 uint256 tokensLen = _tokens.length;

 // Result will always be coll1 len size.

 uint256[] memory sumAmounts = new uint256[](coll1Len);

 uint256 i = 0;

 uint256 j = 0;

 // Sum through all tokens until either left or right side reaches end.

 while (i < tokensLen && j < coll1Len) {

 // If tokens match up then sum them together.

 if (_tokens[i] == _coll1.tokens[j]) {

 sumAmounts[j] = _coll1.amounts[j].add(_amounts[i]);

 ++i;

 }

 // Otherwise just take the left side.

 else {

 sumAmounts[j] = _coll1.amounts[j];

 }

 ++j;

 }

 // If right side ran out add the remaining amounts in the left side.

 while (j < coll1Len) {

 sumAmounts[j] = _coll1.amounts[j];

 ++j;

 }

 return sumAmounts;

}

SOL

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

We advise the code to instead sum / subtract the values in the _coll1.amounts data entry directly,
rendering the new sumAmounts / diffAmounts array redundant. Additionally, this will significantly optimize
the code as only the _tokens array would need to be iterated as the _coll1.amounts data entry will be
"pre-filled" with the desirable amounts.

The code, now located within StabilityPool , has been refactored per our recommendation albeit in a
different approach that is still relatively inefficient. We advise the _tokens array to be iterated rather than
the _coll1 array, iterating the _coll1 array inside the _tokens loop and issuing a break statement
when the correct _coll1 entry has been found to further optimize the code.

Recommendation:

Alleviation:

Type Severity Location

Gas Optimization PoolBase.sol:L22

The PoolBase__AdminOnly error remains unused in the codebase.

contracts/Dependencies/PoolBase.sol

PBE-02C: Unused Error Declaration

Description:

Example:

error PoolBase__AdminOnly();

SOL

22

https://omniscia.io/reports/gravita-protocol-core-protocol-642b98414a1a960014621fc9/appendix/finding-types#gas-optimization

We advise it to be safely omitted from it.

The PoolBase contract is no longer present in the codebase rendering this exhibit no longer applicable.

Recommendation:

Alleviation:

PriceFeed Code Style Findings

Type Severity Location

Code Style PriceFeed.sol:L60

The linked require check has no error message explicitly defined.

contracts/PriceFeed.sol

PFD-01C: Inexistent Error Message

Description:

Example:

require(!isInitialized);

SOL

60

https://omniscia.io/reports/gravita-protocol-core-protocol-642b98414a1a960014621fc9/appendix/finding-types#code-style

We advise one to be set so to increase the legibility of the codebase and aid in validating the require
check's condition.

The require check is no longer present in the codebase rendering this exhibit no longer applicable.

Recommendation:

Alleviation:

Type Severity Location

Gas Optimization PriceFeed.sol:L149, L171

The referenced statements perform external calls to self via the this.fetchPrice syntax redundantly.

contracts/PriceFeed.sol

PFD-02C: Redundant External Self-Calls

Description:

Example:

function _calcEthPrice(uint256 ethAmount) internal returns (uint256) {

 uint256 ethPrice = this.fetchPrice(address(0));

 return ethPrice.mul(ethAmount).div(1 ether);

}

SOL

148

149

150

151

https://omniscia.io/reports/gravita-protocol-core-protocol-642b98414a1a960014621fc9/appendix/finding-types#gas-optimization

We advise the PriceFeed::fetchPrice function to be set as public and the calls to be made "internally"
by removing the this call prefix.

The second referenced instance is no longer present in the codebase whereas the first instance has been
properly corrected to perform an "internal" call rather than an "external" self-call.

Recommendation:

Alleviation:

https://github.com/Gravita-Protocol/Gravita-SmartContracts/blob/bfa97cb37dc0e2927e75b36753585140f25a26dd/contracts/PriceFeed.sol#L97-L133

Type Severity Location

Gas Optimization PriceFeed.sol:L183-L185

The referenced function yields a contract-level constant variable.

contracts/PriceFeed.sol

PFD-03C: Redundant Function Implementation

Description:

Example:

function _getOracleUpdateTimelock() internal view virtual returns (uint256) {

 return ORACLE_UPDATE_TIMELOCK;

}

SOL

183

184

185

https://omniscia.io/reports/gravita-protocol-core-protocol-642b98414a1a960014621fc9/appendix/finding-types#gas-optimization

We advise it to be omitted and invocations of it to be replaced by the constant itself.

The redundant function has been safely removed from the codebase as advised.

Recommendation:

Alleviation:

Type Severity Location

Gas Optimization PriceFeed.sol:L33, L59-L61

The PriceFeed contract inherits the OpenZeppelin OwnableUpgradeable implementation which contains
the Initializable implementation, put in use within the PriceFeed::setAddresses function. As such,
the manual isInitialized flag is redundant.

contracts/PriceFeed.sol

PFD-04C: Redundant Initialization Paradigm

Description:

Example:

function setAddresses(

 address _adminContract,

 address _rethToken,

 address _stethToken,

 address _wstethToken

) external initializer {

 require(!isInitialized);

 isInitialized = true;

 __Ownable_init();

 adminContract = _adminContract;

 rethToken = _rethToken;

 stethToken = _stethToken;

 wstethToken = _wstethToken;

}

SOL

54

55

56

57

58

59

60

61

62

63

64

65

66

67

https://omniscia.io/reports/gravita-protocol-core-protocol-642b98414a1a960014621fc9/appendix/finding-types#gas-optimization
https://github.com/Gravita-Protocol/Gravita-SmartContracts/blob/bfa97cb37dc0e2927e75b36753585140f25a26dd/contracts/PriceFeed.sol#L54-L67

We advise it and its validations to be omitted from the codebase as it is ineffectual and duplicates the
purpose of the Initializable::initializer modifier.

The manual initialization methodology has been removed from the contract as advised.

Recommendation:

Alleviation:

Type Severity Location

Code Style PriceFeed.sol:L80, L82

The linked declaration styles of the referenced structs are using index-based argument initialization.

contracts/PriceFeed.sol

We advise the key-value declaration format to be utilized instead in each instance, greatly increasing the
legibility of the codebase.

The key-value declaration style is now in use in the code that both instances have been merged to,
alleviating this exhibit.

PFD-05C: Suboptimal Struct Declaration Styles

Description:

Example:

queuedOracles[_token] = OracleRecord(newOracle, timelockRelease, true, true, _isEthInd

SOL

80

Recommendation:

Alleviation:

https://omniscia.io/reports/gravita-protocol-core-protocol-642b98414a1a960014621fc9/appendix/finding-types#code-style

ReentrancyGuardUpgradeable Code Style Findings

Type Severity Location

Gas Optimization ReentrancyGuardUpgradeable.sol:L40-L44, L48-L50

The ReentrancyGuardUpgradeable implementation present in the Gravita Protocol codebase represents an
outdated OpenZeppelin version modified to not use the Initializable dependency, however, it is
outdated and thus inefficient.

contracts/Dependencies/ReentrancyGuardUpgradeable.sol

RGU-01C: Inefficient Reentrancy Guard Implementation

Description:

Example:

/**

 * @dev Prevents a contract from calling itself, directly or indirectly.

 * Calling a `nonReentrant` function from another `nonReentrant`

 * function is not supported. It is possible to prevent this from happening

 * by making the `nonReentrant` function external, and making it call a

 * `private` function that does the actual work.

 */

modifier nonReentrant() {

 // On the first call to nonReentrant, _notEntered will be true

 require(_status != _ENTERED, "ReentrancyGuard: reentrant call");

 // Any calls to nonReentrant after this point will fail

 _status = _ENTERED;

 _;

 // By storing the original value once again, a refund is triggered (see

 // https://eips.ethereum.org/EIPS/eip-2200)

 _status = _NOT_ENTERED;

}

SOL

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

https://omniscia.io/reports/gravita-protocol-core-protocol-642b98414a1a960014621fc9/appendix/finding-types#gas-optimization

We advise the internal function paradigm that the latest version of ReentrancyGuardUpgradeable applies
in OpenZeppelin to be replicated here, significantly optimizing the gas cost of the
ReentrancyGuardUpgradeable::nonReentrant modifier.

The ReentrancyGuardUpgradeable contract has been removed from the codebase in favour of using the
actual ReentrancyGuardUpgradeable dependency of OpenZeppelin as a result of this exhibit. As such, we
consider this exhibit addressed.

Recommendation:

Alleviation:

https://github.com/OpenZeppelin/openzeppelin-contracts-upgradeable/blob/v4.8.2/contracts/security/ReentrancyGuardUpgradeable.sol
https://github.com/Gravita-Protocol/Gravita-SmartContracts/blob/bfa97cb37dc0e2927e75b36753585140f25a26dd/contracts/Dependencies/ReentrancyGuardUpgradeable.sol#L39-L51

SortedVessels Code Style Findings

Type Severity Location

Gas Optimization SortedVessels.sol:L48

The SortedVessels::setParams function will invoke the OwnableUpgradeable::renounceOwnership
function which in turn will apply the onlyOwner modifier redundantly.

contracts/SortedVessels.sol

SVS-01C: Inefficient Renunciation of Ownership

Description:

Example:

function setParams(address _vesselManagerAddress, address _borrowerOperationsAddress)

 external

 override

 initializer

{

 require(!isInitialized, "Already initialized");

 isInitialized = true;

 __Ownable_init();

 vesselManager = IVesselManager(_vesselManagerAddress);

 borrowerOperationsAddress = _borrowerOperationsAddress;

 renounceOwnership();

}

SOL

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

https://omniscia.io/reports/gravita-protocol-core-protocol-642b98414a1a960014621fc9/appendix/finding-types#gas-optimization
https://github.com/Gravita-Protocol/Gravita-SmartContracts/blob/bfa97cb37dc0e2927e75b36753585140f25a26dd/contracts/SortedVessels.sol#L77-L91

We advise the OwnableUpgradeable::_transferOwnership function to be utilized directly, transferring
ownership to the zero address.

Ownership of the contract is no longer renounced in the latest iteration of the codebase rendering this
exhibit inapplicable.

Recommendation:

Alleviation:

Type Severity Location

Gas Optimization
SortedVessels.sol:L143, L147-L148, L151-L153, L156-L158, L161-L164,
L167, L184, L186, L189, L191, L195, L197, L201-L203, L205-L207, L212-
L213, L216-L217, L370, L376, L383-L384, L404, L410, L417-L418

The linked statements perform key-based lookup operations on mapping declarations from storage multiple
times for the same key redundantly.

contracts/SortedVessels.sol

SVS-02C: Inefficient mapping Lookups

Description:

Example:

https://omniscia.io/reports/gravita-protocol-core-protocol-642b98414a1a960014621fc9/appendix/finding-types#gas-optimization

data[_asset].nodes[_id].exists = true;

if (prevId == address(0) && nextId == address(0)) {

 // Insert as head and tail

 data[_asset].head = _id;

 data[_asset].tail = _id;

} else if (prevId == address(0)) {

 // Insert before `prevId` as the head

 data[_asset].nodes[_id].nextId = data[_asset].head;

 data[_asset].nodes[data[_asset].head].prevId = _id;

 data[_asset].head = _id;

} else if (nextId == address(0)) {

 // Insert after `nextId` as the tail

 data[_asset].nodes[_id].prevId = data[_asset].tail;

 data[_asset].nodes[data[_asset].tail].nextId = _id;

 data[_asset].tail = _id;

} else {

 // Insert at insert position between `prevId` and `nextId`

 data[_asset].nodes[_id].nextId = nextId;

 data[_asset].nodes[_id].prevId = prevId;

 data[_asset].nodes[prevId].nextId = _id;

 data[_asset].nodes[nextId].prevId = _id;

}

data[_asset].size = data[_asset].size.add(1);

SOL

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

As the lookups internally perform an expensive keccak256 operation, we advise the lookups to be cached
wherever possible to a single local declaration that either holds the value of the mapping in case of primitive
types or holds a storage pointer to the struct contained.

All inefficient mapping lookups have been significantly optimized per our recommendation, rendering this
exhibit fully alleviated.

Recommendation:

Alleviation:

Type Severity Location

Gas Optimization SortedVessels.sol:L41, L48

The SortedVessels inherits the OwnableUpgradeable implementation redundantly as it initializes it within
the SortedVessels::setParams function and consequently renounces ownership in the same call.

contracts/SortedVessels.sol

SVS-03C: Inexplicable Ownable Pattern

Description:

Example:

function setParams(address _vesselManagerAddress, address _borrowerOperationsAddress)

 external

 override

 initializer

{

 require(!isInitialized, "Already initialized");

 isInitialized = true;

 __Ownable_init();

 vesselManager = IVesselManager(_vesselManagerAddress);

 borrowerOperationsAddress = _borrowerOperationsAddress;

 renounceOwnership();

}

SOL

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

https://omniscia.io/reports/gravita-protocol-core-protocol-642b98414a1a960014621fc9/appendix/finding-types#gas-optimization
https://github.com/Gravita-Protocol/Gravita-SmartContracts/blob/bfa97cb37dc0e2927e75b36753585140f25a26dd/contracts/SortedVessels.sol#L77-L91

We advise it to be removed, inheriting the Initializable implementation of OpenZeppelin instead which
is properly put in use within the contract.

While the renunciation has been removed, the OwnableUpgradeable contract is still inherited by the
SortedVessels . To properly alleviate this exhibit, we advise the OwnableUpgradeable contract to be
omitted from the SortedVessels entirely.

Recommendation:

Alleviation:

Type Severity Location

Gas Optimization SortedVessels.sol:L80, L82-L83

The SortedVessels contract inherits the OpenZeppelin OwnableUpgradeable implementation which
contains the Initializable implementation, put in use within the SortedVessels::setParams function.
As such, the manual isInitialized flag is redundant.

contracts/SortedVessels.sol

SVS-04C: Redundant Initialization Paradigm

Description:

Example:

function setParams(address _vesselManagerAddress, address _borrowerOperationsAddress)

 external

 override

 initializer

{

 require(!isInitialized, "Already initialized");

 isInitialized = true;

SOL

77

78

79

80

81

82

83

https://omniscia.io/reports/gravita-protocol-core-protocol-642b98414a1a960014621fc9/appendix/finding-types#gas-optimization
https://github.com/Gravita-Protocol/Gravita-SmartContracts/blob/bfa97cb37dc0e2927e75b36753585140f25a26dd/contracts/SortedVessels.sol#L77-L91

We advise it and its validations to be omitted from the codebase as it is ineffectual and duplicates the
purpose of the Initializable::initializer modifier.

The manual initialization methodology has been removed from the contract as advised.

Recommendation:

Alleviation:

StabilityPool Code Style Findings

Type Severity Location

Gas Optimization StabilityPool.sol:L267

The StabilityPool::setAddresses function will invoke the OwnableUpgradeable::renounceOwnership
function which in turn will apply the onlyOwner modifier redundantly.

contracts/StabilityPool.sol

SPL-01C: Inefficient Renunciation of Ownership

Description:

Example:

https://omniscia.io/reports/gravita-protocol-core-protocol-642b98414a1a960014621fc9/appendix/finding-types#gas-optimization
https://github.com/Gravita-Protocol/Gravita-SmartContracts/blob/bfa97cb37dc0e2927e75b36753585140f25a26dd/contracts/StabilityPool.sol#L242-L268

function setAddresses(

 address _borrowerOperationsAddress,

 address _vesselManagerAddress,

 address _activePoolAddress,

 address _debtTokenAddress,

 address _sortedVesselsAddress,

 address _communityIssuanceAddress,

 address _adminContractAddress

) external initializer override {

 require(!isInitialized, "StabilityPool: Already initialized");

 isInitialized = true;

 __Ownable_init();

 __ReentrancyGuard_init();

 borrowerOperations = IBorrowerOperations(_borrowerOperationsAddress);

 vesselManager = IVesselManager(_vesselManagerAddress);

 activePool = IActivePool(_activePoolAddress);

 debtToken = IDebtToken(_debtTokenAddress);

 sortedVessels = ISortedVessels(_sortedVesselsAddress);

 communityIssuance = ICommunityIssuance(_communityIssuanceAddress);

 adminContract = IAdminContract(_adminContractAddress);

 P = DECIMAL_PRECISION;

 renounceOwnership();

}

SOL

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

We advise the OwnableUpgradeable::_transferOwnership function to be utilized directly, transferring
ownership to the zero address.

Ownership of the contract is no longer renounced in the latest iteration of the codebase rendering this
exhibit inapplicable.

Recommendation:

Alleviation:

Type Severity Location

Gas Optimization StabilityPool.sol:L404, L405, L661, L662, L836, L838-L841, L852,
L856-L859

The linked statements perform key-based lookup operations on mapping declarations from storage multiple
times for the same key redundantly.

contracts/StabilityPool.sol

SPL-02C: Inefficient mapping Lookups

Description:

Example:

function _updateG(uint256 _GRVTIssuance) internal {

 uint256 cachedTotalDebtTokenDeposits = totalDebtTokenDeposits; // cached to save a

 /*

 * When total deposits is 0, G is not updated. In this case, the GRVT issued can n

 * depositors - it is missed out on, and remains in the balanceof the CommunityIss

 *

 */

 if (cachedTotalDebtTokenDeposits == 0 || _GRVTIssuance == 0) {

 return;

 }

 uint256 GRVTPerUnitStaked = _computeGRVTPerUnitStaked(_GRVTIssuance, cachedTotalDe

 uint256 marginalGRVTGain = GRVTPerUnitStaked.mul(P);

 epochToScaleToG[currentEpoch][currentScale] = epochToScaleToG[currentEpoch][curren

 emit G_Updated(epochToScaleToG[currentEpoch][currentScale], currentEpoch, currentS

}

SOL

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

https://omniscia.io/reports/gravita-protocol-core-protocol-642b98414a1a960014621fc9/appendix/finding-types#gas-optimization

As the lookups internally perform an expensive keccak256 operation, we advise the lookups to be cached
wherever possible to a single local declaration that either holds the value of the mapping in case of primitive
types or holds a storage pointer to the struct contained.

All but the first instance pair have been optimized per our recommendation, rendering this exhibit partially
alleviated.

Recommendation:

Alleviation:

Type Severity Location

Gas Optimization StabilityPool.sol:L174, L615-L616, L806-L807

The pendingCollGains member of the StabilityPool is utilized in multiple statements within the code,
however, it results in a no-op as it remains filled with zero-values throughout its lifetime.

contracts/StabilityPool.sol

SPL-03C: Inexplicable Contract Member

Description:

Example:

// Reset pendingCollGains since those were all sent to the borrower

Colls memory tempPendingCollGains;

pendingCollGains[_to] = tempPendingCollGains;

SOL

805

806

807

https://omniscia.io/reports/gravita-protocol-core-protocol-642b98414a1a960014621fc9/appendix/finding-types#gas-optimization

We advise it to be re-evaluated and potentially omitted, significantly improving the gas costs of the
functions it was utilized in.

The pendingCollGains contract member has been safely removed as advised.

Recommendation:

Alleviation:

Type Severity Location

Gas Optimization StabilityPool.sol:L254, L267

The StabilityPool inherits the OwnableUpgradeable implementation redundantly as it initializes it within
the StabilityPool::setAddresses function and consequently renounces ownership in the same call.

contracts/StabilityPool.sol

SPL-04C: Inexplicable Ownable Pattern

Description:

Example:

https://omniscia.io/reports/gravita-protocol-core-protocol-642b98414a1a960014621fc9/appendix/finding-types#gas-optimization
https://github.com/Gravita-Protocol/Gravita-SmartContracts/blob/bfa97cb37dc0e2927e75b36753585140f25a26dd/contracts/StabilityPool.sol#L242-L268

function setAddresses(

 address _borrowerOperationsAddress,

 address _vesselManagerAddress,

 address _activePoolAddress,

 address _debtTokenAddress,

 address _sortedVesselsAddress,

 address _communityIssuanceAddress,

 address _adminContractAddress

) external initializer override {

 require(!isInitialized, "StabilityPool: Already initialized");

 isInitialized = true;

 __Ownable_init();

 __ReentrancyGuard_init();

 borrowerOperations = IBorrowerOperations(_borrowerOperationsAddress);

 vesselManager = IVesselManager(_vesselManagerAddress);

 activePool = IActivePool(_activePoolAddress);

 debtToken = IDebtToken(_debtTokenAddress);

 sortedVessels = ISortedVessels(_sortedVesselsAddress);

 communityIssuance = ICommunityIssuance(_communityIssuanceAddress);

 adminContract = IAdminContract(_adminContractAddress);

 P = DECIMAL_PRECISION;

 renounceOwnership();

}

SOL

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

We advise it to be removed, inheriting the Initializable implementation of OpenZeppelin instead which
is properly put in use within the contract.

The contract no longer utilizes or inherits the OwnableUpgradeable implementation, addressing this exhibit
in full.

Recommendation:

Alleviation:

Type Severity Location

Gas Optimization StabilityPool.sol:L635, L794, L835, L849, L896, L924, L934

The linked for loops increment / decrement their iterator "safely" due to Solidity's built - in safe arithmetics
(post- 0.8.X).

contracts/StabilityPool.sol

We advise the increment / decrement operations to be performed in an unchecked code block as the last
statement within each for loop to optimize their execution cost.

The loop iterator increments have been optimized as advised where applicable, however, their i++
counterpart is utilized instead of ++i . We advise the latter to be set in use as it is more optimal than the
present code.

SPL-05C: Loop Iterator Optimizations

Description:

Example:

for (uint256 i = 0; i < assetsLen; ++i) {

SOL

635

Recommendation:

Alleviation:

https://omniscia.io/reports/gravita-protocol-core-protocol-642b98414a1a960014621fc9/appendix/finding-types#gas-optimization

Type Severity Location

Gas Optimization StabilityPool.sol:L250-L251, L253

The StabilityPool contract inherits the OpenZeppelin OwnableUpgradeable implementation which
contains the Initializable implementation, put in use within the StabilityPool::setAddresses
function. As such, the manual isInitialized flag is redundant.

contracts/StabilityPool.sol

SPL-06C: Redundant Initialization Paradigm

Description:

Example:

https://omniscia.io/reports/gravita-protocol-core-protocol-642b98414a1a960014621fc9/appendix/finding-types#gas-optimization
https://github.com/Gravita-Protocol/Gravita-SmartContracts/blob/bfa97cb37dc0e2927e75b36753585140f25a26dd/contracts/StabilityPool.sol#L242-L268

We advise it and its validations to be omitted from the codebase as it is ineffectual and duplicates the
purpose of the Initializable::initializer modifier.

The manual initialization methodology has been removed from the contract as advised.

function setAddresses(

 address _borrowerOperationsAddress,

 address _vesselManagerAddress,

 address _activePoolAddress,

 address _debtTokenAddress,

 address _sortedVesselsAddress,

 address _communityIssuanceAddress,

 address _adminContractAddress

) external initializer override {

 require(!isInitialized, "StabilityPool: Already initialized");

 isInitialized = true;

 __Ownable_init();

 __ReentrancyGuard_init();

 borrowerOperations = IBorrowerOperations(_borrowerOperationsAddress);

 vesselManager = IVesselManager(_vesselManagerAddress);

 activePool = IActivePool(_activePoolAddress);

 debtToken = IDebtToken(_debtTokenAddress);

 sortedVessels = ISortedVessels(_sortedVesselsAddress);

 communityIssuance = ICommunityIssuance(_communityIssuanceAddress);

 adminContract = IAdminContract(_adminContractAddress);

 P = DECIMAL_PRECISION;

 renounceOwnership();

}

SOL

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

Recommendation:

Alleviation:

Type Severity Location

Code Style StabilityPool.sol:L614

The linked declaration style of a struct is using index-based argument initialization.

contracts/StabilityPool.sol

We advise the key-value declaration format to be utilized instead, greatly increasing the legibility of the
codebase.

The referenced declaration of a struct is no longer present in the codebase, rendering this exhibit no
longer applicable.

SPL-07C: Suboptimal Struct Declaration Style

Description:

Example:

Colls(collateralsFromNewGains, amountsFromNewGains),

SOL

614

Recommendation:

Alleviation:

https://omniscia.io/reports/gravita-protocol-core-protocol-642b98414a1a960014621fc9/appendix/finding-types#code-style

Timelock Code Style Findings

Type Severity Location

Code Style Timelock.sol:L113-L115

The referenced statements replicate the behaviour of the Timelock::adminOnly modifier.

contracts/Timelock.sol

TKC-01C: Inefficient Application of Access Control

Description:

Example:

function queueTransaction(

 address target,

 uint value,

 string memory signature,

 bytes memory data,

 uint eta

) public returns (bytes32) {

 if (msg.sender != admin) {

 revert Timelock__AdminOnly();

 }

SOL

106

107

108

109

110

111

112

113

114

115

https://omniscia.io/reports/gravita-protocol-core-protocol-642b98414a1a960014621fc9/appendix/finding-types#code-style
https://github.com/Gravita-Protocol/Gravita-SmartContracts/blob/bfa97cb37dc0e2927e75b36753585140f25a26dd/contracts/Timelock.sol#L64-L69

We advise the modifier to be utilized by the Timelock::queueTransaction function and the manual
access control statements to be omitted.

The Timelock::adminOnly modifier is utilized in place of the manual check in the
Timelock::queueTransaction as advised.

Recommendation:

Alleviation:

https://github.com/Gravita-Protocol/Gravita-SmartContracts/blob/bfa97cb37dc0e2927e75b36753585140f25a26dd/contracts/Timelock.sol#L106-L125
https://github.com/Gravita-Protocol/Gravita-SmartContracts/blob/5e45123d169a126a3055945373421e1bda5515b9/contracts/Timelock.sol#L64-L69
https://github.com/Gravita-Protocol/Gravita-SmartContracts/blob/5e45123d169a126a3055945373421e1bda5515b9/contracts/Timelock.sol#L106-L125

Type Severity Location

Gas Optimization Timelock.sol:L179-L181

The Timelock::getBlockTimestamp function implementation is redundant as it yields a statement literal (
block.timestamp).

contracts/Timelock.sol

TKC-02C: Redundant Function Implementation

Description:

Example:

function getBlockTimestamp() internal view returns (uint) {

 return block.timestamp;

}

SOL

179

180

181

https://omniscia.io/reports/gravita-protocol-core-protocol-642b98414a1a960014621fc9/appendix/finding-types#gas-optimization
https://github.com/Gravita-Protocol/Gravita-SmartContracts/blob/bfa97cb37dc0e2927e75b36753585140f25a26dd/contracts/Timelock.sol#L179-L181

We advise all its invocations to be replaced by the block.timestamp statement directly, optimizing their gas
cost.

The redundant Timelock::getBlockTimestamp function has been safely omitted from the codebase as
advised.

Recommendation:

Alleviation:

https://github.com/Gravita-Protocol/Gravita-SmartContracts/blob/5e45123d169a126a3055945373421e1bda5515b9/contracts/Timelock.sol#L179-L181

VesselManager Code Style Findings

Type Severity Location

Gas Optimization

VesselManager.sol:L227-L228, L281-L283, L417-L418, L420, L422, L426-
L427, L429, L504-L505, L522-L523, L533-L535, L541-L542, L547-L549,
L554-L556, L558-L559, L594-L596, L598-L599, L610, L613, L619, L621-
L622, L625, L692-L693, L701-L702, L711-L712, L721-L722, L731, L737

The linked statements perform key-based lookup operations on mapping declarations from storage multiple
times for the same key redundantly.

contracts/VesselManager.sol

VMR-01C: Inefficient mapping Lookups

Description:

Example:

function _getCurrentVesselAmounts(address _asset, address _borrower) internal view ret

 uint256 pendingCollReward = getPendingAssetReward(_asset, _borrower);

 uint256 pendingDebtReward = getPendingDebtTokenReward(_asset, _borrower);

 uint256 currentAsset = Vessels[_borrower][_asset].coll.add(pendingCollReward);

 uint256 currentDebt = Vessels[_borrower][_asset].debt.add(pendingDebtReward);

 return (currentAsset, currentDebt);

}

SOL

500

501

502

503

504

505

506

507

508

https://omniscia.io/reports/gravita-protocol-core-protocol-642b98414a1a960014621fc9/appendix/finding-types#gas-optimization

As the lookups internally perform an expensive keccak256 operation, we advise the lookups to be cached
wherever possible to a single local declaration that either holds the value of the mapping in case of primitive
types or holds a storage pointer to the struct contained.

All inefficient mapping lookups have been significantly optimized per our recommendation, rendering this
exhibit fully alleviated.

Recommendation:

Alleviation:

Type Severity Location

Gas Optimization VesselManager.sol:L692

The address type asset data point present in each Vessel struct is redundant as the Vessel requires the
_asset key to be accessed.

contracts/VesselManager.sol

VMR-02C: Redundant Data Point

Description:

Example:

function setVesselStatus(

 address _asset,

 address _borrower,

 uint256 _num

) external override onlyBorrowerOperations {

 Vessels[_borrower][_asset].asset = _asset;

 Vessels[_borrower][_asset].status = Status(_num);

}

SOL

687

688

689

690

691

692

693

694

https://omniscia.io/reports/gravita-protocol-core-protocol-642b98414a1a960014621fc9/appendix/finding-types#gas-optimization

We advise the data point to be safely omitted as it is not utilized within the contract.

The asset data point has been safely removed from the data entry.

Recommendation:

Alleviation:

Type Severity Location

Gas Optimization VesselManager.sol:L238

The referenced statement performs an external call to self via the this.getVesselStatus syntax
redundantly.

contracts/VesselManager.sol

VMR-03C: Redundant External Self-Call

Description:

Example:

function isVesselActive(address _asset, address _borrower) public view override return

 return this.getVesselStatus(_asset, _borrower) == uint256(Status.active);

}

SOL

237

238

239

https://omniscia.io/reports/gravita-protocol-core-protocol-642b98414a1a960014621fc9/appendix/finding-types#gas-optimization

We advise the VesselManager::getVesselStatus function to be set as public and the call to be made
"internally" by removing the this call prefix.

The redundant self-call has been replaced by an "internal" call of its public function as advised.

Recommendation:

Alleviation:

https://github.com/Gravita-Protocol/Gravita-SmartContracts/blob/bfa97cb37dc0e2927e75b36753585140f25a26dd/contracts/VesselManager.sol#L661-L663

Type Severity Location

Gas Optimization VesselManager.sol:L134-L136

The VesselManager contract inherits the OpenZeppelin OwnableUpgradeable implementation which
contains the Initializable implementation, put in use within the VesselManager::setAddresses
function. As such, the manual isInitialized flag is redundant.

contracts/VesselManager.sol

VMR-04C: Redundant Initialization Paradigm

Description:

Example:

function setAddresses(

 address _borrowerOperationsAddress,

 address _stabilityPoolAddress,

 address _gasPoolAddress,

 address _collSurplusPoolAddress,

 address _debtTokenAddress,

 address _feeCollectorAddress,

 address _sortedVesselsAddress,

 address _vesselManagerOperationsAddress,

 address _adminContractAddress

) external override initializer {

 require(!isInitialized, "Already initialized");

 isInitialized = true;

 __Ownable_init();

 borrowerOperations = _borrowerOperationsAddress;

 stabilityPool = IStabilityPool(_stabilityPoolAddress);

 gasPoolAddress = _gasPoolAddress;

 collSurplusPool = ICollSurplusPool(_collSurplusPoolAddress);

 debtToken = IDebtToken(_debtTokenAddress);

 feeCollector = IFeeCollector(_feeCollectorAddress);

 sortedVessels = ISortedVessels(_sortedVesselsAddress);

 vesselManagerOperations = IVesselManagerOperations(_vesselManagerOperationsAddress

 adminContract = IAdminContract(_adminContractAddress);

}

SOL

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

https://omniscia.io/reports/gravita-protocol-core-protocol-642b98414a1a960014621fc9/appendix/finding-types#gas-optimization
https://github.com/Gravita-Protocol/Gravita-SmartContracts/blob/bfa97cb37dc0e2927e75b36753585140f25a26dd/contracts/VesselManager.sol#L124-L147

We advise it and its validations to be omitted from the codebase as it is ineffectual and duplicates the
purpose of the Initializable::initializer modifier.

The manual initialization methodology has been removed from the contract as advised.

Recommendation:

Alleviation:

VesselManagerOperations Code Style Findings

Type Severity Location

Gas Optimization VesselManagerOperations.sol:L485, L548, L594, L782

The linked for loops increment / decrement their iterator "safely" due to Solidity's built - in safe arithmetics
(post- 0.8.X).

contracts/VesselManagerOperations.sol

VMO-01C: Loop Iterator Optimizations

Description:

Example:

for (vars.i = 0; vars.i < _vesselArray.length; vars.i++) {

SOL

485

https://omniscia.io/reports/gravita-protocol-core-protocol-642b98414a1a960014621fc9/appendix/finding-types#gas-optimization

We advise the increment / decrement operations to be performed in an unchecked code block as the last
statement within each for loop to optimize their execution cost.

The loop iterator increments have been optimized as advised where applicable, however, their i++
counterpart is utilized instead of ++i . We advise the latter to be set in use as it is more optimal than the
present code.

Recommendation:

Alleviation:

Type Severity Location

Gas Optimization VesselManagerOperations.sol:L66-L67, L75

The VesselManagerOperations contract inherits the OpenZeppelin OwnableUpgradeable implementation
which contains the Initializable implementation, put in use within the
VesselManagerOperations::setAddresses function. As such, the manual isInitialized flag is
redundant.

contracts/VesselManagerOperations.sol

VMO-02C: Redundant Initialization Paradigm

Description:

Example:

function setAddresses(

 address _vesselManagerAddress,

 address _sortedVesselsAddress,

 address _stabilityPoolAddress,

 address _collSurplusPoolAddress,

 address _debtTokenAddress,

 address _adminContractAddress

) external initializer {

 require(!isInitialized, "Already initialized");

 __Ownable_init();

 vesselManager = IVesselManager(_vesselManagerAddress);

 sortedVessels = ISortedVessels(_sortedVesselsAddress);

 stabilityPool = IStabilityPool(_stabilityPoolAddress);

 collSurplusPool = ICollSurplusPool(_collSurplusPoolAddress);

 debtToken = IDebtToken(_debtTokenAddress);

 adminContract = IAdminContract(_adminContractAddress);

 isInitialized = true;

}

SOL

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

https://omniscia.io/reports/gravita-protocol-core-protocol-642b98414a1a960014621fc9/appendix/finding-types#gas-optimization
https://github.com/Gravita-Protocol/Gravita-SmartContracts/blob/bfa97cb37dc0e2927e75b36753585140f25a26dd/contracts/VesselManagerOperations.sol#L59-L76

We advise it and its validations to be omitted from the codebase as it is ineffectual and duplicates the
purpose of the Initializable::initializer modifier.

The manual initialization methodology has been removed from the contract as advised.

Recommendation:

Alleviation:

Type Severity Location

Code Style VesselManagerOperations.sol:L97-L101, L347, L770

The linked declaration styles of the referenced structs are using index-based argument initialization.

contracts/VesselManagerOperations.sol

VMO-03C: Suboptimal Struct Declaration Styles

Description:

Example:

LiquidationContractsCache memory contractsCache = LiquidationContractsCache(

 adminContract.activePool(),

 adminContract.defaultPool(),

 sortedVessels

);

SOL

97

98

99

100

101

https://omniscia.io/reports/gravita-protocol-core-protocol-642b98414a1a960014621fc9/appendix/finding-types#code-style

We advise the key-value declaration format to be utilized instead in each instance, greatly increasing the
legibility of the codebase.

The key-value declaration style is now in use in all referenced instances of the exhibit, addressing it in full.

Recommendation:

Alleviation:

Finding Types

A description of each finding type included in the report can be found below and is linked by each
respective finding. A full list of finding types Omniscia has defined will be viewable at the central audit
methodology we will publish soon.

Many contracts that interact with DeFi contain a set of complex external call executions that need to happen
in a particular sequence and whose execution is usually taken for granted whereby it is not always the case.
External calls should always be validated, either in the form of require checks imposed at the contract-level
or via more intricate mechanisms such as invoking an external getter-variable and ensuring that it has been
properly updated.

As there are no inherent guarantees to the inputs a function accepts, a set of guards should always be in
place to sanitize the values passed in to a particular function.

These types of issues arise when a linked code segment may not behave as expected, either due to mistyped
code, convoluted if blocks, overlapping functions / variable names and other ambiguous statements.

Language specific issues arise from certain peculiarities that the Solidity language boasts that discerns it
from other conventional programming languages. For example, the EVM is a 256-bit machine meaning that
operations on less-than-256-bit types are more costly for the EVM in terms of gas costs, meaning that loops
utilizing a uint8 variable because their limit will never exceed the 8-bit range actually cost more than
redundantly using a uint256 variable.

An official Solidity style guide exists that is constantly under development and is adjusted on each new
Solidity release, designating how the overall look and feel of a codebase should be. In these types of
findings, we identify whether a project conforms to a particular naming convention and whether that
convention is consistent within the codebase and legible. In case of inconsistencies, we point them out under
this category. Additionally, variable shadowing falls under this category as well which is identified when a

External Call Validation

Input Sanitization

Indeterminate Code

Language Specific

Code Style

g y y g g y

local-level variable contains the same name as a contract-level variable that is present in the inheritance
chain of the local execution level's context.

Gas optimization findings relate to ways the codebase can be optimized to reduce the gas cost involved with
interacting with it to various degrees. These types of findings are completely optional and are pointed out
for the benefit of the project's developers.

These types of findings relate to incompatibility between a particular standard's implementation and the
project's implementation, oftentimes causing significant issues in the usability of the contracts.

In Solidity, math generally behaves differently than other programming languages due to the constraints of
the EVM. A prime example of this difference is the truncation of values during a division which in turn leads
to loss of precision and can cause systems to behave incorrectly when dealing with percentages and
proportion calculations.

This category is a bit broad and is meant to cover implementations that contain flaws in the way they are
implemented, either due to unimplemented functionality, unaccounted-for edge cases or similar
extraordinary scenarios.

This category covers all findings that relate to a significant degree of centralization present in the project and
as such the potential of a Single-Point-of-Failure (SPoF) for the project that we urge them to re-consider and
potentially omit.

This category relates to findings that arise from re-entrant external calls (such as EIP-721 minting operations)
and revolve around the inapplicacy of the Checks-Effects-Interactions (CEI) pattern, a pattern that dictates
checks (require statements etc.) should occur before effects (local storage updates) and interactions
(external calls) should be performed last.

Gas Optimization

Standard Conformity

Mathematical Operations

Logical Fault

Centralization Concern

Reentrant Call

Disclaimer

The following disclaimer applies to all versions of the audit report produced (preliminary / public / private)
and is in effect for all past, current, and future audit reports that are produced and hosted under Omniscia:

Omniscia ("Omniscia") has conducted an independent security review to verify the integrity of and highlight
any vulnerabilities, bugs or errors, intentional or unintentional, that may be present in the codebase that
were provided for the scope of this Engagement.

Blockchain technology and the cryptographic assets it supports are nascent technologies. This makes them
extremely volatile assets. Any assessment report obtained on such volatile and nascent assets may include
unpredictable results which may lead to positive or negative outcomes.

In some cases, services provided may be reliant on a variety of third parties. This security review does not
constitute endorsement, agreement or acceptance for the Project and technology that was reviewed. Users
relying on this security review should not consider this as having any merit for financial advice or
technological due diligence in any shape, form or nature.

The veracity and accuracy of the findings presented in this report relate solely to the proficiency,
competence, aptitude and discretion of our auditors. Omniscia and its employees make no guarantees, nor
assurance that the contracts are free of exploits, bugs, vulnerabilities, deprecation of technologies or any
system / economical / mathematical malfunction.

This audit report shall not be printed, saved, disclosed nor transmitted to any persons or parties on any
objective, goal or justification without due written assent, acquiescence or approval by Omniscia.

All the information/opinions/suggestions provided in this report does not constitute financial or investment
advice, nor should it be used to signal that any person reading this report should invest their funds without
sufficient individual due diligence regardless of the findings presented in this report.

Information in this report is provided 'as is'. Omniscia is under no covenant to the completeness, accuracy or
solidity of the contracts reviewed. Omniscia's goal is to help reduce the attack vectors/surface and the high
level of variance associated with utilizing new and consistently changing technologies.

IMPORTANT TERMS & CONDITIONS REGARDING OUR SECURITY
AUDITS/REVIEWS/REPORTS AND ALL PUBLIC/PRIVATE
CONTENT/DELIVERABLES

Omniscia in no way claims any guarantee, warranty or assurance of security or functionality of the
technology that was in scope for this security review.

In no event will Omniscia, its partners, employees, agents or any parties related to the design/creation of this
security review be ever liable to any parties for, or lack thereof, decisions and/or actions with regards to the
information provided in this security review.

Cryptocurrencies and all other technologies directly or indirectly related to cryptocurrencies are not
standardized, highly prone to malfunction and extremely speculative by nature. No due diligence and/or
safeguards may be insufficient and users should exercise maximum caution when participating and/or
investing in this nascent industry.

The preparation of this security review has made all reasonable attempts to provide clear and actionable
recommendations to the Project team (the “client”) with respect to the rectification, amendment and/or
revision of any highlighted issues, vulnerabilities or exploits within the contracts in scope for this
engagement.

It is the sole responsibility of the Project team to provide adequate levels of test and perform the necessary
checks to ensure that the contracts are functioning as intended, and more specifically to ensure that the
functions contained within the contracts in scope have the desired intended effects, functionalities and
outcomes, as documented by the Project team.

All services, the security reports, discussions, work product, attack vectors description or any other materials,
products or results of this security review engagement is provided "as is" and "as available" and with all
faults, uncertainty and defects without warranty or guarantee of any kind.

Omniscia will assume no liability or responsibility for delays, errors, mistakes, or any inaccuracies of content,
suggestions, materials or for any loss, delay, damage of any kind which arose as a result of this
engagement/security review.

Omniscia will assume no liability or responsibility for any personal injury, property damage, of any kind
whatsoever that resulted in this engagement and the customer having access to or use of the products,
engineers, services, security report, or any other other materials.

For avoidance of doubt, this report, its content, access, and/or usage thereof, including any associated
services or materials, shall not be considered or relied upon as any form of financial, investment, tax, legal,
regulatory, or any other type of advice.

