May 17, 2023

SMART CONTRACT
AUDIT REPORT

Gravita

% omniscia.io

] info@omniscia.io

Online report: gravita-protocol

'» OMNISCIA

mailto:info@omniscia.io
https://omniscia.io/reports/gravita-protocol-core-protocol-642b98414a1a960014621fc9/

Core Protocol Security Audit

Audit Revisions
Commit Hash Date Revision Hash

5e45123d16 May 17th 2023 1f8d3c80e7

Audit Overview

We were tasked with performing an audit of the Gravita Protocol codebase and in particular their core

Liquity-based borrowing protocol.

Over the course of the audit, we identified multiple significant vulnerabilities that arise by the dynamic-

collateral features introduced in the new Gravita Protocol implementation.

We advise the Gravita Protocol team to closely evaluate all minor-and-above findings identified in the report

and promptly remediate them as well as consider all optimizational exhibits identified in the report.

Post-Audit Conclusion

The Gravita Protocol team iterated through all findings within the report and provided us with a revised

commit hash to evaluate all exhibits on.

We evaluated all alleviations performed by Gravita Protocol and identified that certain exhibits had not been

adequately dealt with.

We followed up with the Gravita Protocol team and have concluded that they wish to acknowledge them

given that the exhibits that have not been directly remediated do not pose a threat to the protocol.

As such, we consider all outputs of the audit report properly consumed by the Gravita Finance team.

Contracts Assessed

Files in Scope

ActivePool.sol (APL)

AdminContract.sol (ACT)

BaseMath.sol (BMH)

BorrowerOperations.sol (BOS)

CollSurplusPool.sol (CSP)

DebtToken.sol (DTN)

DefaultPool.sol (DPL)

ERC20Permit.sol (ERC)

ERC20Decimals.sol (ERD)

FeeCollector.sol (FCR)

GasPool.sol (GPL)

GravitaBase.sol (GBE)

GravitaMath.sol (GMH)

Repository

Gravita-SmartContracts

Gravita-SmartContracts

Gravita-SmartContracts

Gravita-SmartContracts

Gravita-SmartContracts

Gravita-SmartContracts

Gravita-SmartContracts

Gravita-SmartContracts

Gravita-SmartContracts

Gravita-SmartContracts

Gravita-SmartContracts

Gravita-SmartContracts

Gravita-SmartContracts

Commit(s)

bfa97cb37d,
5e45123d16

bfa97cb37d,
5e45123d16

bfa97cb37d,
5e45123d16

bfa97cb37d,
5e45123d16

bfa97cb37d,
5e45123d16

bfa97cb37d,
5e45123d16

bfa97cb37d,
5e45123d16

bfa97cb37d,
5e45123d16

bfa97cb37d,
5e45123d16

bfa97cb37d,
5e45123d16

bfa97cb37d,
5e45123d16

bfa97cb37d,
5e45123d16

bfa97cb37d,
5e45123d16

Files in Scope

GravitaSafeMath128.sol (GSM)

PoolBase.sol (PBE)

PriceFeed.sol (PFD)

ReentrancyGuardUpgradeable.sol (RGU)

SafeMath.sol (SMH)

SortedVessels.sol (SVS)

StabilityPool.sol (SPL)

SafetyTransfer.sol (STR)

Timelock.sol (TKC)

VesselManager.sol (VMR)

VesselManagerOperations.sol (VMO)

Repository

Gravita-SmartContracts

Gravita-SmartContracts

Gravita-SmartContracts

Gravita-SmartContracts

Gravita-SmartContracts

Gravita-SmartContracts

Gravita-SmartContracts

Gravita-SmartContracts

Gravita-SmartContracts

Gravita-SmartContracts

Gravita-SmartContracts

Commit(s)

bfa97cb37d,
5e45123d16

bfa97cb37d,
5e45123d16

bfa97cb37d,
5e45123d16

bfa97cb37d,
5e45123d16

bfa97cb37d,
5e45123d16

bfa97cb37d,
5e45123d16

bfa97cb37d,
5e45123d16

bfa97cb37d,
5e45123d16

bfa97cb37d,
5e45123d16

bfa97cb37d,
5e45123d16

bfa97cb37d,
5e45123d16

Audit Synopsis

Severity Identified Alleviated Partially Alleviated Acknowledged
@ unknown 3 3 0 0
@ nformational 73 60 10 3
16 4 0 12
@ Medium 4 4 0 0
@ Major 3 3 0 0

During the audit, we filtered and validated a total of 22 findings utilizing static analysis tools as well as
identified a total of 77 findings during the manual review of the codebase. We strongly recommend that
any minor severity or higher findings are dealt with promptly prior to the project's launch as they can

introduce potential misbehaviours of the system as well as exploits.

Compilation

The project utilizes as its development pipeline tool, containing an array of tests and scripts coded

in JavaScript.

To compile the project, the command needs to be issued via the CLI tool to (e

npx hardhat compile

The tool automatically selects Solidity version based on the version specified within the

hardhat.config.js Rill

The project contains discrepancies with regards to the Solidity version used as the statements of the
contracts are open-ended (I

We advise them to be locked to EIEEED). the same version utilized for our static analysis as well

as optimizational review of the codebase.

During compilation with the pipeline, no errors were identified that relate to the syntax or

bytecode size of the contracts.

Static Analysis

The execution of our static analysis toolkit identified 457 potential issues within the codebase of which 370

were ruled out to be false positives or negligible findings.

The remaining 87 issues were validated and grouped and formalized into the 22 exhibits that follow:

ID Severity Addressed Title

APL-01S Inexistent Sanitization of Input Addresses
ACT-01S @ nformational @ ves Data Location Optimization

ACT-02S @ 'nformational @ ves lllegible Numeric Value Representations
ACT-03S @ nformational @ ves Inexistent Visibility Specifier

ACT-04S Inexistent Sanitization of Input Addresses
BOS-01S Inexistent Sanitization of Input Addresses
CSP-01S @ Informational @ ves Inexistent Visibility Specifier

CSP-02S Inexistent Sanitization of Input Addresses
DTN-01S @ nformational @ ves Inexistent Event Emissions

DTN-02S Inexistent Sanitization of Input Addresses
DPL-01S Inexistent Sanitization of Input Addresses
FCR-01S @ nformational @ ves Data Location Optimizations

FCR-02S Inexistent Sanitization of Input Addresses

https://omniscia.io/reports/gravita-protocol-core-protocol-642b98414a1a960014621fc9/static-analysis/ActivePool-APL#APL-01S
https://omniscia.io/reports/gravita-protocol-core-protocol-642b98414a1a960014621fc9/static-analysis/AdminContract-ACT#ACT-01S
https://omniscia.io/reports/gravita-protocol-core-protocol-642b98414a1a960014621fc9/static-analysis/AdminContract-ACT#ACT-02S
https://omniscia.io/reports/gravita-protocol-core-protocol-642b98414a1a960014621fc9/static-analysis/AdminContract-ACT#ACT-03S
https://omniscia.io/reports/gravita-protocol-core-protocol-642b98414a1a960014621fc9/static-analysis/AdminContract-ACT#ACT-04S
https://omniscia.io/reports/gravita-protocol-core-protocol-642b98414a1a960014621fc9/static-analysis/BorrowerOperations-BOS#BOS-01S
https://omniscia.io/reports/gravita-protocol-core-protocol-642b98414a1a960014621fc9/static-analysis/CollSurplusPool-CSP#CSP-01S
https://omniscia.io/reports/gravita-protocol-core-protocol-642b98414a1a960014621fc9/static-analysis/CollSurplusPool-CSP#CSP-02S
https://omniscia.io/reports/gravita-protocol-core-protocol-642b98414a1a960014621fc9/static-analysis/DebtToken-DTN#DTN-01S
https://omniscia.io/reports/gravita-protocol-core-protocol-642b98414a1a960014621fc9/static-analysis/DebtToken-DTN#DTN-02S
https://omniscia.io/reports/gravita-protocol-core-protocol-642b98414a1a960014621fc9/static-analysis/DefaultPool-DPL#DPL-01S
https://omniscia.io/reports/gravita-protocol-core-protocol-642b98414a1a960014621fc9/static-analysis/FeeCollector-FCR#FCR-01S
https://omniscia.io/reports/gravita-protocol-core-protocol-642b98414a1a960014621fc9/static-analysis/FeeCollector-FCR#FCR-02S

ID Severity Addressed Title

FCR-03S @ Medium @ ves Improper Invocations of EIP-20
GMH-01S @ nformational @ ves lllegible Numeric Value Representation
PFD-01S Minor Inexistent Sanitization of Input Addresses
SVS-01S @ nformational ® Nuliified Inexistent Visibility Specifier

SPL-01S @ Informational @ Nullified Inexistent Visibility Specifier

SPL-02S Minor Inexistent Sanitization of Input Addresses
VMR-01S Minor Inexistent Sanitization of Input Addresses
VMO-01S @ nformational lllegible Numeric Value Representations

VMO-02S Minor Inexistent Sanitization of Input Addresses

https://omniscia.io/reports/gravita-protocol-core-protocol-642b98414a1a960014621fc9/static-analysis/FeeCollector-FCR#FCR-03S
https://omniscia.io/reports/gravita-protocol-core-protocol-642b98414a1a960014621fc9/static-analysis/GravitaMath-GMH#GMH-01S
https://omniscia.io/reports/gravita-protocol-core-protocol-642b98414a1a960014621fc9/static-analysis/PriceFeed-PFD#PFD-01S
https://omniscia.io/reports/gravita-protocol-core-protocol-642b98414a1a960014621fc9/static-analysis/SortedVessels-SVS#SVS-01S
https://omniscia.io/reports/gravita-protocol-core-protocol-642b98414a1a960014621fc9/static-analysis/StabilityPool-SPL#SPL-01S
https://omniscia.io/reports/gravita-protocol-core-protocol-642b98414a1a960014621fc9/static-analysis/StabilityPool-SPL#SPL-02S
https://omniscia.io/reports/gravita-protocol-core-protocol-642b98414a1a960014621fc9/static-analysis/VesselManager-VMR#VMR-01S
https://omniscia.io/reports/gravita-protocol-core-protocol-642b98414a1a960014621fc9/static-analysis/VesselManagerOperations-VMO#VMO-01S
https://omniscia.io/reports/gravita-protocol-core-protocol-642b98414a1a960014621fc9/static-analysis/VesselManagerOperations-VMO#VMO-02S

Manual Review

A thorough line-by-line review was conducted on the codebase to identify potential malfunctions and

vulnerabilities in Gravita Protocol's novel borrowing implementation.

As the project at hand implements a Liquity-based borrowing protocol backed by multiple collateral types,
intricate care was put into ensuring that the flow of funds within the system conforms to the

specifications and restrictions laid forth within the protocol's specification.

We validated that all state transitions of the system occur within sane criteria and that all rudimentary
formulas within the system execute as expected. We pinpointed several dynamic collateral-related

vulnerabilities within the system which could have had severe ramifications to its overall operation.

Additionally, the system was investigated for any other commonly present attack vectors such as re-entrancy
attacks, mathematical truncations, logical flaws and ERC / EIP standard inconsistencies. The documentation

of the project was satisfactory to the extent it need be.

A total of 77 findings were identified over the course of the manual review of which 17 findings concerned
the behaviour and security of the system. The non-security related findings, such as optimizations, are

included in the separate Code Style chapter.

The finding table below enumerates all these security / behavioural findings:

ID Severity Addressed Title

ACT-01M @ Unknown @ ves Improper Reset Functionality

ACT-02M @ Medium @ ves Improper Permission of Collateral Activation
ACT-03M @ Major @ ves E?Jsc‘)tﬁ;riapability of Gas Compensation
ERC-01M Minor Insecure EIP-2612 Implementation
ERC-02M @ Medium @ ves Insecure Elliptic Curve Recovery Mechanism

GSM-01M @ (nformational Q@ ves Improper Application of Safe Arithmetics

https://eips.ethereum.org/
https://omniscia.io/reports/gravita-protocol-core-protocol-642b98414a1a960014621fc9/code-style
https://omniscia.io/reports/gravita-protocol-core-protocol-642b98414a1a960014621fc9/manual-review/AdminContract-ACT#ACT-01M
https://omniscia.io/reports/gravita-protocol-core-protocol-642b98414a1a960014621fc9/manual-review/AdminContract-ACT#ACT-02M
https://omniscia.io/reports/gravita-protocol-core-protocol-642b98414a1a960014621fc9/manual-review/AdminContract-ACT#ACT-03M
https://omniscia.io/reports/gravita-protocol-core-protocol-642b98414a1a960014621fc9/manual-review/ERC20Permit-ERC#ERC-01M
https://omniscia.io/reports/gravita-protocol-core-protocol-642b98414a1a960014621fc9/manual-review/ERC20Permit-ERC#ERC-02M
https://omniscia.io/reports/gravita-protocol-core-protocol-642b98414a1a960014621fc9/manual-review/GravitaSafeMath128-GSM#GSM-01M

ID Severity Addressed Title

Significant Centralization of Sensitive

PFD-01M @ Unknown @ ves Functionality

PFD-02M Minor @ ves Incorrect Error Handling

PFD-03M Minor @ ves Inexistent Initialization of Price

PFD-04M @ Medium @ ves Incorrect Lido Staked ETH Value Assumption
PFD-05M @ Major @ ves Incorrect Lido Staked ETH Price Usage
SMH-01M @ (nformational @ ves Improper Application of Safe Arithmetics
STR-01M Minor @ ves Incorrect Decimal Assumption

STR-02M @ Major @ ves Insecure Conversion of Amount

SVS-01M @ (nformational Insecure Data List Size Enforcement
SPL-01M @ Unknown @ ves Inexistent Normalization of Asset

TKC-01M Minor @ ves Inexistent Prevention of Duplicate Invocations

https://omniscia.io/reports/gravita-protocol-core-protocol-642b98414a1a960014621fc9/manual-review/PriceFeed-PFD#PFD-01M
https://omniscia.io/reports/gravita-protocol-core-protocol-642b98414a1a960014621fc9/manual-review/PriceFeed-PFD#PFD-02M
https://omniscia.io/reports/gravita-protocol-core-protocol-642b98414a1a960014621fc9/manual-review/PriceFeed-PFD#PFD-03M
https://omniscia.io/reports/gravita-protocol-core-protocol-642b98414a1a960014621fc9/manual-review/PriceFeed-PFD#PFD-04M
https://omniscia.io/reports/gravita-protocol-core-protocol-642b98414a1a960014621fc9/manual-review/PriceFeed-PFD#PFD-05M
https://omniscia.io/reports/gravita-protocol-core-protocol-642b98414a1a960014621fc9/manual-review/SafeMath-SMH#SMH-01M
https://omniscia.io/reports/gravita-protocol-core-protocol-642b98414a1a960014621fc9/manual-review/SafetyTransfer-STR#STR-01M
https://omniscia.io/reports/gravita-protocol-core-protocol-642b98414a1a960014621fc9/manual-review/SafetyTransfer-STR#STR-02M
https://omniscia.io/reports/gravita-protocol-core-protocol-642b98414a1a960014621fc9/manual-review/SortedVessels-SVS#SVS-01M
https://omniscia.io/reports/gravita-protocol-core-protocol-642b98414a1a960014621fc9/manual-review/StabilityPool-SPL#SPL-01M
https://omniscia.io/reports/gravita-protocol-core-protocol-642b98414a1a960014621fc9/manual-review/Timelock-TKC#TKC-01M

Code Style

During the manual portion of the audit, we identified 60 optimizations that can be applied to the codebase
that will decrease the operational cost associated with the execution of a particular function and generally

ensure that the project complies with the latest best practices and standards in Solidity.

Additionally, this section of the audit contains any opinionated adjustments we believe the code should

make to make it more legible as well as truer to its purpose.

These optimizations are enumerated below:

ID Severity Addressed Title

APL-01C @ Informational @ Nullified Inefficient Renunciation of Ownership
APL-02C @ nformational O Partial Inexplicable Ownable Pattern
APL-03C @ Informational @ ves Redundant Initialization Paradigm
ACT-01C @ Informational @ vYes Inefficient Lookups
ACT-02C @ 'nformational @ ves Inexistent Error Message

ACT-03C @ Informational O Partial Loop Iterator Optimizations
ACT-04C @ Informational @ ves Misleading Variable Name
BOS-01C @ Informational @ ves Ineffectual Native Value Check
BOS-02C @ 'nformational @ ves Redundant Native Value Check
BOS-03C @ Informational @ ves Suboptimal Struct Declaration Styles

CSP-01C @ 'nformational @ Nuliified Inefficient Renunciation of Ownership

https://omniscia.io/reports/gravita-protocol-core-protocol-642b98414a1a960014621fc9/code-style/ActivePool-APL#APL-01C
https://omniscia.io/reports/gravita-protocol-core-protocol-642b98414a1a960014621fc9/code-style/ActivePool-APL#APL-02C
https://omniscia.io/reports/gravita-protocol-core-protocol-642b98414a1a960014621fc9/code-style/ActivePool-APL#APL-03C
https://omniscia.io/reports/gravita-protocol-core-protocol-642b98414a1a960014621fc9/code-style/AdminContract-ACT#ACT-01C
https://omniscia.io/reports/gravita-protocol-core-protocol-642b98414a1a960014621fc9/code-style/AdminContract-ACT#ACT-02C
https://omniscia.io/reports/gravita-protocol-core-protocol-642b98414a1a960014621fc9/code-style/AdminContract-ACT#ACT-03C
https://omniscia.io/reports/gravita-protocol-core-protocol-642b98414a1a960014621fc9/code-style/AdminContract-ACT#ACT-04C
https://omniscia.io/reports/gravita-protocol-core-protocol-642b98414a1a960014621fc9/code-style/BorrowerOperations-BOS#BOS-01C
https://omniscia.io/reports/gravita-protocol-core-protocol-642b98414a1a960014621fc9/code-style/BorrowerOperations-BOS#BOS-02C
https://omniscia.io/reports/gravita-protocol-core-protocol-642b98414a1a960014621fc9/code-style/BorrowerOperations-BOS#BOS-03C
https://omniscia.io/reports/gravita-protocol-core-protocol-642b98414a1a960014621fc9/code-style/CollSurplusPool-CSP#CSP-01C

ID

CSP-02C

CSP-03C

CSP-04C

DTN-01C

DPL-01C

DPL-02C

DPL-03C

DPL-04C

ERD-01C

ERC-01C

ERC-02C

ERC-03C

ERC-04C

FCR-01C

FCR-02C

FCR-03C

Severity

@ nformational

@ nformational

@ nformational

@ nformational

@ nformational

@ nformational

@ nformational

@ nformational

@ nformational

@ nformational

@ nformational

@ nformational

@ nformational

@ nformational

@ nformational

@ nformational

Addressed

@ ves

O rartial

@ ves

@ ves

@ Nullified

@ ves

O Fartial

@ ves

@ ves

@ ves

@ ves

@ ves

@ ves

@ ves

@ ves

Title

Inefficient Lookups

Inexplicable Ownable Pattern

Redundant Initialization Paradigm

Variable Mutability Specifier (Immutable)

Inefficient Renunciation of Ownership

Inefficient Lookups

Inexplicable Ownable Pattern

Redundant Initialization Paradigm

Non-Standard Interface Name

Inefficient Lookups

Multiple Top-Level Declarations

Redundant Low-Level Assembly Blocks

Variable Mutability Specifier (Immutable)

Inefficient Lookups

Inexistent Error Messages

Leftover Test Code

https://omniscia.io/reports/gravita-protocol-core-protocol-642b98414a1a960014621fc9/code-style/CollSurplusPool-CSP#CSP-02C
https://omniscia.io/reports/gravita-protocol-core-protocol-642b98414a1a960014621fc9/code-style/CollSurplusPool-CSP#CSP-03C
https://omniscia.io/reports/gravita-protocol-core-protocol-642b98414a1a960014621fc9/code-style/CollSurplusPool-CSP#CSP-04C
https://omniscia.io/reports/gravita-protocol-core-protocol-642b98414a1a960014621fc9/code-style/DebtToken-DTN#DTN-01C
https://omniscia.io/reports/gravita-protocol-core-protocol-642b98414a1a960014621fc9/code-style/DefaultPool-DPL#DPL-01C
https://omniscia.io/reports/gravita-protocol-core-protocol-642b98414a1a960014621fc9/code-style/DefaultPool-DPL#DPL-02C
https://omniscia.io/reports/gravita-protocol-core-protocol-642b98414a1a960014621fc9/code-style/DefaultPool-DPL#DPL-03C
https://omniscia.io/reports/gravita-protocol-core-protocol-642b98414a1a960014621fc9/code-style/DefaultPool-DPL#DPL-04C
https://omniscia.io/reports/gravita-protocol-core-protocol-642b98414a1a960014621fc9/code-style/ERC20Decimals-ERD#ERD-01C
https://omniscia.io/reports/gravita-protocol-core-protocol-642b98414a1a960014621fc9/code-style/ERC20Permit-ERC#ERC-01C
https://omniscia.io/reports/gravita-protocol-core-protocol-642b98414a1a960014621fc9/code-style/ERC20Permit-ERC#ERC-02C
https://omniscia.io/reports/gravita-protocol-core-protocol-642b98414a1a960014621fc9/code-style/ERC20Permit-ERC#ERC-03C
https://omniscia.io/reports/gravita-protocol-core-protocol-642b98414a1a960014621fc9/code-style/ERC20Permit-ERC#ERC-04C
https://omniscia.io/reports/gravita-protocol-core-protocol-642b98414a1a960014621fc9/code-style/FeeCollector-FCR#FCR-01C
https://omniscia.io/reports/gravita-protocol-core-protocol-642b98414a1a960014621fc9/code-style/FeeCollector-FCR#FCR-02C
https://omniscia.io/reports/gravita-protocol-core-protocol-642b98414a1a960014621fc9/code-style/FeeCollector-FCR#FCR-03C

ID

FCR-04C

FCR-05C

GBE-01C

GMH-01C

GMH-02C

PBE-01C

PBE-02C

PFD-01C

PFD-02C

PFD-03C

PFD-04C

PFD-05C

RGU-01C

SVS-01C

SVS-02C

SVS-03C

Severity

@ nformational

@ nformational

@ nformational

@ nformational

@ nformational

@ nformational

@ nformational

@ nformational

@ nformational

@ nformational

@ nformational

@ nformational

@ nformational

@ nformational

@ nformational

@ nformational

Addressed

O Partial

@ ves

@ ves

@ ves

@ ves

O Fartial

@ ves

@® Nuliified

@ ves

@ ves

@ ves

@ ves

@ ves

® Nullified

@ ves

O Partial

Title

Loop Iterator Optimization

Redundant Initialization Paradigm

Unused Function Declaration

lllegible Representation of Value Literal

Repetitive Value Literal

Significantly Inefficient Merging of Pending Gains /
Distributed Funds

Unused Error Declaration

Inexistent Error Message

Redundant External Self-Calls

Redundant Function Implementation

Redundant Initialization Paradigm

Suboptimal Struct Declaration Styles

Inefficient Reentrancy Guard Implementation

Inefficient Renunciation of Ownership

Inefficient Lookups

Inexplicable Ownable Pattern

https://omniscia.io/reports/gravita-protocol-core-protocol-642b98414a1a960014621fc9/code-style/FeeCollector-FCR#FCR-04C
https://omniscia.io/reports/gravita-protocol-core-protocol-642b98414a1a960014621fc9/code-style/FeeCollector-FCR#FCR-05C
https://omniscia.io/reports/gravita-protocol-core-protocol-642b98414a1a960014621fc9/code-style/GravitaBase-GBE#GBE-01C
https://omniscia.io/reports/gravita-protocol-core-protocol-642b98414a1a960014621fc9/code-style/GravitaMath-GMH#GMH-01C
https://omniscia.io/reports/gravita-protocol-core-protocol-642b98414a1a960014621fc9/code-style/GravitaMath-GMH#GMH-02C
https://omniscia.io/reports/gravita-protocol-core-protocol-642b98414a1a960014621fc9/code-style/PoolBase-PBE#PBE-01C
https://omniscia.io/reports/gravita-protocol-core-protocol-642b98414a1a960014621fc9/code-style/PoolBase-PBE#PBE-02C
https://omniscia.io/reports/gravita-protocol-core-protocol-642b98414a1a960014621fc9/code-style/PriceFeed-PFD#PFD-01C
https://omniscia.io/reports/gravita-protocol-core-protocol-642b98414a1a960014621fc9/code-style/PriceFeed-PFD#PFD-02C
https://omniscia.io/reports/gravita-protocol-core-protocol-642b98414a1a960014621fc9/code-style/PriceFeed-PFD#PFD-03C
https://omniscia.io/reports/gravita-protocol-core-protocol-642b98414a1a960014621fc9/code-style/PriceFeed-PFD#PFD-04C
https://omniscia.io/reports/gravita-protocol-core-protocol-642b98414a1a960014621fc9/code-style/PriceFeed-PFD#PFD-05C
https://omniscia.io/reports/gravita-protocol-core-protocol-642b98414a1a960014621fc9/code-style/ReentrancyGuardUpgradeable-RGU#RGU-01C
https://omniscia.io/reports/gravita-protocol-core-protocol-642b98414a1a960014621fc9/code-style/SortedVessels-SVS#SVS-01C
https://omniscia.io/reports/gravita-protocol-core-protocol-642b98414a1a960014621fc9/code-style/SortedVessels-SVS#SVS-02C
https://omniscia.io/reports/gravita-protocol-core-protocol-642b98414a1a960014621fc9/code-style/SortedVessels-SVS#SVS-03C

ID

SVS-04C

SPL-01C

SPL-02C

SPL-03C

SPL-04C

SPL-05C

SPL-06C

SPL-07C

TKC-01C

TKC-02C

VMR-01C

VMR-02C

VMR-03C

VMR-04C

VMO-01C

VMO-02C

Severity

@ nformational

@ nformational

@ nformational

@ nformational

@ nformational

@ nformational

@ nformational

@ nformational

@ nformational

@ nformational

@ nformational

@ nformational

@ nformational

@ nformational

@ nformational

@ nformational

Addressed

@ ves

@® Nullified

O Fartial

@ ves

@ ves

O rartial

@ ves

® Nuliified

@ ves

@ ves

@ ves

@ ves

@ ves

@ ves

O Fartial

@ ves

Title

Redundant Initialization Paradigm

Inefficient Renunciation of Ownership

Inefficient Lookups

Inexplicable Contract Member

Inexplicable Ownable Pattern

Loop Iterator Optimizations

Redundant Initialization Paradigm

Suboptimal Struct Declaration Style

Inefficient Application of Access Control

Redundant Function Implementation

Inefficient Lookups

Redundant Data Point

Redundant External Self-Call

Redundant Initialization Paradigm

Loop Iterator Optimizations

Redundant Initialization Paradigm

https://omniscia.io/reports/gravita-protocol-core-protocol-642b98414a1a960014621fc9/code-style/SortedVessels-SVS#SVS-03C
https://omniscia.io/reports/gravita-protocol-core-protocol-642b98414a1a960014621fc9/code-style/SortedVessels-SVS#SVS-04C
https://omniscia.io/reports/gravita-protocol-core-protocol-642b98414a1a960014621fc9/code-style/StabilityPool-SPL#SPL-01C
https://omniscia.io/reports/gravita-protocol-core-protocol-642b98414a1a960014621fc9/code-style/StabilityPool-SPL#SPL-02C
https://omniscia.io/reports/gravita-protocol-core-protocol-642b98414a1a960014621fc9/code-style/StabilityPool-SPL#SPL-03C
https://omniscia.io/reports/gravita-protocol-core-protocol-642b98414a1a960014621fc9/code-style/StabilityPool-SPL#SPL-04C
https://omniscia.io/reports/gravita-protocol-core-protocol-642b98414a1a960014621fc9/code-style/StabilityPool-SPL#SPL-05C
https://omniscia.io/reports/gravita-protocol-core-protocol-642b98414a1a960014621fc9/code-style/StabilityPool-SPL#SPL-06C
https://omniscia.io/reports/gravita-protocol-core-protocol-642b98414a1a960014621fc9/code-style/StabilityPool-SPL#SPL-07C
https://omniscia.io/reports/gravita-protocol-core-protocol-642b98414a1a960014621fc9/code-style/Timelock-TKC#TKC-01C
https://omniscia.io/reports/gravita-protocol-core-protocol-642b98414a1a960014621fc9/code-style/Timelock-TKC#TKC-02C
https://omniscia.io/reports/gravita-protocol-core-protocol-642b98414a1a960014621fc9/code-style/VesselManager-VMR#VMR-01C
https://omniscia.io/reports/gravita-protocol-core-protocol-642b98414a1a960014621fc9/code-style/VesselManager-VMR#VMR-02C
https://omniscia.io/reports/gravita-protocol-core-protocol-642b98414a1a960014621fc9/code-style/VesselManager-VMR#VMR-03C
https://omniscia.io/reports/gravita-protocol-core-protocol-642b98414a1a960014621fc9/code-style/VesselManager-VMR#VMR-04C
https://omniscia.io/reports/gravita-protocol-core-protocol-642b98414a1a960014621fc9/code-style/VesselManagerOperations-VMO#VMO-01C
https://omniscia.io/reports/gravita-protocol-core-protocol-642b98414a1a960014621fc9/code-style/VesselManagerOperations-VMO#VMO-02C

ID Severity Addressed Title

VMO-03C @ Informational @ vYes Suboptimal Struct Declaration Styles

https://omniscia.io/reports/gravita-protocol-core-protocol-642b98414a1a960014621fc9/code-style/VesselManagerOperations-VMO#VMO-03C

ActivePool Static Analysis Findings

APL-01S: Inexistent Sanitization of Input Addresses

Type Severity Location

Input Sanitization ActivePool.sol:L84-L106

Description:

The linked function(s) accept arguments yet do not properly sanitize them.

Impact:

The presence of zero-value addresses, especially in implementations, can cause the contract
to be permanently inoperable. These checks are advised as zero-value inputs are a common side-effect of

off-chain software related bugs.

Example:

contracts/ActivePool.sol

https://omniscia.io/reports/gravita-protocol-core-protocol-642b98414a1a960014621fc9/appendix/finding-types#input-sanitization

function setAddresses (

_borrowerOperationsAddress,

_collSurplusPoolAddress,

_defaultPoolAddress,

_stabilityPoolAddress,

_vesselManagerAddress,

_vesselManagerOperationsAddress
) external initializer ({

require (!isInitialized, "Already initializ

isInitialized = true;

__Ownable init();

__ReentrancyGuard init();

borrowerOperationsAddress = borrowerOperationsAddress;
collSurplusPool = ICollSurplusPool (collSurplusPoolAddress);
defaultPool = IDefaultPool (defaultPoolAddress);
stabilityPoolAddress = stabilityPoolAddress;
vesselManagerAddress = vesselManagerAddress;

vesselManagerOperationsAddress = vesselManagerOperationsAddress;

renounceOwnership () ;

Recommendation:

We advise some basic sanitization to be put in place by ensuring that each specified is non-zero.

Alleviation:

The Gravita Protocol team has opted to not apply a remediation for this exhibit thus rendering it

acknowledged.

AdminContract Static Analysis Findings

ACT-01S: Data Location Optimization

Type Severity Location
Gas Optimization AdminContract.sol:L.211
Description:

The linked input argument is set as inan function.
Example:

contracts/AdminContract.so

SOL

function isWrappedMany (

[] memory collaterals

) external view returns (bool[] memory wrapped) {

https://omniscia.io/reports/gravita-protocol-core-protocol-642b98414a1a960014621fc9/appendix/finding-types#gas-optimization

Recommendation:

We advise it to be set as optimizing its read-access gas cost.

Alleviation:

The argument's data location has been properly updated from (uersg to EEEEREIa Optimizing its read-

access gas cost.

ACT-02S: lllegible Numeric Value Representations

Type Severity Location
Code Style AdminContract.sol:L44-L45, L51, L321, L336, L366, L369, L415
Description:

The linked representations of numeric literals are sub-optimally represented decreasing the legibility of the

codebase.

Example:

contracts/AdminContract.so

SOL

uint256 public constant MCR DEFAULT 1100000000000000000;
uint256 public constant CCR DEFAULT 1500000000000000000;

https://omniscia.io/reports/gravita-protocol-core-protocol-642b98414a1a960014621fc9/appendix/finding-types#code-style

Recommendation:

To properly illustrate each value's purpose, we advise the following guidelines to be followed. For values
meant to depict fractions with a base of ({8, we advise fractions to be utilized directly (i.e. becomes
) as they are supported. For values meant to represent a percentage base, we advise each value to
utilize the underscore () separator to discern the percentage decimal (i.e. becomes [EREIEE)

becomes and so on). Finally, for large numeric values we simply advise the underscore character to be

utilized again to represent them (i.e. ERelsJolsJole} becomes EREICIOIele)).

Alleviation:

All numeric denominations of the contract have been updated to either utilize the representation or

the underscore-separated paradigm outlined in the exhibit. As such, we consider this exhibit fully alleviated.

ACT-03S: Inexistent Visibility Specifier

Type Severity Location
Code Style AdminContract.sol:L69
Description:

The linked variable has no visibility specifier explicitly set.

Example:

contracts/AdminContract.so

SOL

mapping (address => CollateralParams) collateralParams;

https://omniscia.io/reports/gravita-protocol-core-protocol-642b98414a1a960014621fc9/appendix/finding-types#code-style

Recommendation:
We advise one to be set so to avoid potential compilation discrepancies in the future as the current

behaviour is for the compiler to assign one automatically which may deviate between versions.

Alleviation:

An visibility specifier has been introduced to the [IR IS TR R contract member, ensuring

that no inconsistencies can arise between compiler versions.

ACT-04S: Inexistent Sanitization of Input Addresses

Type Severity Location
Input Sanitization AdminContract.sol:L134-L153
Description:

The linked function(s) accept arguments yet do not properly sanitize them.

Impact:

The presence of zero-value addresses, especially in implementations, can cause the contract
to be permanently inoperable. These checks are advised as zero-value inputs are a common side-effect of

off-chain software related bugs.

Example:

contracts/AdminContract.so

SOL

function setAddresses (
address communityIssuanceAddress,
addre _activePoolAddress,
addre _defaultPoolAddress,
EYeleha _stabilityPoolAddress,
_collSurplusPoolAddress,
_priceFeedAddress,
__shortTimelock,
_longTimelock
) external onlyOwner {
requi
communityIssuance = ICommunityIssuance (communityIssuanceAddress) ;
activePool = IActivePool (activePoolAddress);
defaultPool = IDefaultPool(defaultPoolAddress) ;
stabilityPool = IStabilityPool(stabilityPoolAddress) ;
collSurplusPool = ICollSurplusPool (collSurplusPoolAddress) ;

priceFeed = IPriceFeed(priceFeedAddress);

shortTimelock = shortTimelock;

longTimelock = longTimelock;

https://omniscia.io/reports/gravita-protocol-core-protocol-642b98414a1a960014621fc9/appendix/finding-types#input-sanitization

Recommendation:

We advise some basic sanitization to be put in place by ensuring that each specified is non-zero.

Alleviation:

The Gravita Protocol team has opted to not apply a remediation for this exhibit thus rendering it

acknowledged.

BorrowerOperations Static Analysis Findings

BOS-01S: Inexistent Sanitization of Input Addresses

Type Severity Location

Input Sanitization BorrowerOperations.sol:L91-L111

Description:

The linked function(s) accept arguments yet do not properly sanitize them.

Impact:

The presence of zero-value addresses, especially in implementations, can cause the contract
to be permanently inoperable. These checks are advised as zero-value inputs are a common side-effect of

off-chain software related bugs.

Example:

contracts/BorrowerOperations.sol

https://omniscia.io/reports/gravita-protocol-core-protocol-642b98414a1a960014621fc9/appendix/finding-types#input-sanitization

_vesselManagerAddress,

_stabilityPoolAddress,

_gasPoolAddress,

_collSurplusPoolAddress,

_sortedVesselsAddress,

_debtTokenAddress,

_feeCollectorAddress,

_adminContractAddress

>rnal override {

require(!isInitialized, "Already initialized"):;
isInitialized true;
vesselManager IVesselManager (_vesselManagerAddress) ;
stabilityPool IStabilityPool (_stabilityPoolAddress) ;
gasPoolAddress = gasPoolAddress;
collSurplusPool = ICollSurplusPool (collSurplusPoolAddress);
sortedVessels = ISortedVessels(sortedVesselsAddress) ;
debtToken = IDebtToken (debtTokenAddress) ;
feeCollector = IFeeCollector(feeCollectorAddress);

adminContract = IAdminContract (adminContractAddress) ;

Recommendation:

We advise some basic sanitization to be put in place by ensuring that each specified is non-zero.

Alleviation:

The Gravita Protocol team has opted to not apply a remediation for this exhibit thus rendering it

acknowledged.

CollSurplusPool Static Analysis Findings

CSP-01S: Inexistent Visibility Specifier
Type Severity Location

Code Style CollSurplusPool.sol:L26

Description:

The linked variable has no visibility specifier explicitly set.

Example:

contracts/CollSurplusPool.so

SOL

mapping (address => uint256) balances;

https://omniscia.io/reports/gravita-protocol-core-protocol-642b98414a1a960014621fc9/appendix/finding-types#code-style

Recommendation:

We advise one to be set so to avoid potential compilation discrepancies in the future as the current
behaviour is for the compiler to assign one automatically which may deviate between versions.
Alleviation:

An visibility specifier has been introduced to the contract member, ensuring that no

inconsistencies can arise between compiler versions.

CSP-02S: Inexistent Sanitization of Input Addresses

Type Severity Location
Input Sanitization CollSurplusPool.sol:L32-L49
Description:

The linked function(s) accept arguments yet do not properly sanitize them.

Impact:

The presence of zero-value addresses, especially in implementations, can cause the contract
to be permanently inoperable. These checks are advised as zero-value inputs are a common side-effect of

off-chain software related bugs.

Example:

contracts/CollSurplusPool.so

SOL

function setAddresses (
5 _activePoolAddress,
s borrowerOperationsAddress,
address vesselManagerAddress,
s vesselManagerOperationsAddress
) external override initializer {
require (!isInitialized, "Already initialized");

isInitialized = true;
___Ownable init();
activePoolAddress = activePoolAddress;

borrowerOperationsAddress = borrowerOperationsAddress;

vesselManagerAddress = vesselManagerAddress;

vesselManagerOperationsAddress = vesselManagerOperationsAddress;

renounceOwnership () ;

https://omniscia.io/reports/gravita-protocol-core-protocol-642b98414a1a960014621fc9/appendix/finding-types#input-sanitization

Recommendation:

We advise some basic sanitization to be put in place by ensuring that each specified is non-zero.

Alleviation:

The Gravita Protocol team has opted to not apply a remediation for this exhibit thus rendering it

acknowledged.

DebtToken Static Analysis Findings

DTN-01S: Inexistent Event Emissions

Type Severity Location
Language Specific DebtToken.sol:L88-L90, L92-L94
Description:

The linked functions adjust sensitive contract variables yet do not emit an event for it.

Example:

contracts/DebtToken.sol

SOL

function addWhitelist (address address) external override onlyTimelock ({

whitelistedContracts[address] = true;

https://omniscia.io/reports/gravita-protocol-core-protocol-642b98414a1a960014621fc9/appendix/finding-types#language-specific

Recommendation:

We advise an to be declared and correspondingly emitted for each function to ensure off-chain
processes can properly react to this system adjustment.

Alleviation:

A RIERISEREIISERRYl cvent has been introduced to the PSS contract and is now correspondingly

emitted in both referenced functions, alleviating this exhibit in full.

DTN-02S: Inexistent Sanitization of Input Addresses

Type Severity Location
Input Sanitization DebtToken.sol:L42-L52
Description:

The linked function(s) accept arguments yet do not properly sanitize them.

Impact:

The presence of zero-value addresses, especially in implementations, can cause the contract
to be permanently inoperable. These checks are advised as zero-value inputs are a common side-effect of

off-chain software related bugs.

Example:

contracts/DebtToken.sol

SOL

constructor (
address vesselManagerAddress,
addre _stabilityPoolAddress,
addre _borrowerOperationsAddress,
EYeleha _timelockAddress
) , "GRAI") {
vesselManagerAddress = vesselManagerAddress;
timelockAddress = timelockAddress;

stabilityPool = IStabilityPool (stabilityPoolAddress) ;

borrowerOperationsAddress = borrowerOperationsAddress;

https://omniscia.io/reports/gravita-protocol-core-protocol-642b98414a1a960014621fc9/appendix/finding-types#input-sanitization

Recommendation:

We advise some basic sanitization to be put in place by ensuring that each specified is non-zero.

Alleviation:

The Gravita Protocol team has opted to not apply a remediation for this exhibit thus rendering it

acknowledged.

DefaultPool Static Analysis Findings

DPL-01S: Inexistent Sanitization of Input Addresses

Type Severity Location
Input Sanitization DefaultPool.sol:L36-L49
Description:

The linked function(s) accept arguments yet do not properly sanitize them.

Impact:

The presence of zero-value addresses, especially in implementations, can cause the contract
to be permanently inoperable. These checks are advised as zero-value inputs are a common side-effect of

off-chain software related bugs.

Example:

contracts/DefaultPool.sol

SOL

function setAddresses(address vesselManagerAddress, address _activePoolAddress)

external

initializer

require (!isInitialized, "Already initialized");

isInitialized = true;

__Ownable init();

vesselManagerAddress = vesselManagerAddress;

activePoolAddress = activePoolAddress;

renounceOwnership () ;

https://omniscia.io/reports/gravita-protocol-core-protocol-642b98414a1a960014621fc9/appendix/finding-types#input-sanitization

Recommendation:

We advise some basic sanitization to be put in place by ensuring that each specified is non-zero.

Alleviation:

The Gravita Protocol team has opted to not apply a remediation for this exhibit thus rendering it

acknowledged.

FeeCollector Static Analysis Findings

FCR-01S: Data Location Optimizations

Type Severity Location
Gas Optimization FeeCollector.sol:L136
Description:

The linked input arguments are set as in function(s).

Example:

contracts/FeeCollector.sol

SOL

function collectFees (address[] memory borrowers, address[] memory assets) external (

https://omniscia.io/reports/gravita-protocol-core-protocol-642b98414a1a960014621fc9/appendix/finding-types#gas-optimization

Recommendation:

We advise them to be set as optimizing their read-access gas cost.

Alleviation:

All input arguments of the [Na Rt TRy function have been adjusted to (EERRRcEIE)

optimizing their read-access gas cost significantly.

https://github.com/Gravita-Protocol/Gravita-SmartContracts/blob/5e45123d169a126a3055945373421e1bda5515b9/contracts/FeeCollector.sol#L136-L156

FCR-02S: Inexistent Sanitization of Input Addresses

Type Severity Location
Input Sanitization FeeCollector.sol:L42-L63
Description:

The linked function(s) accept arguments yet do not properly sanitize them.

Impact:

The presence of zero-value addresses, especially in implementations, can cause the contract

to be permanently inoperable. These checks are advised as zero-value inputs are a common side-effect of

off-chain software related bugs.

Example:

contracts/FeeCollector.sol

https://omniscia.io/reports/gravita-protocol-core-protocol-642b98414a1a960014621fc9/appendix/finding-types#input-sanitization

function setAddresses (
_borrowerOperationsAddress,
_vesselManagerAddress,
_grvtStakingAddress,
_debtTokenAddress,
_treasuryAddress,
bool routeToGRVTStaking
) external initializer ({
require (!isInitialized);
require (_treasuryAddress != addre (0));
borrowerOperationsAddress _borrowerOperationsAddress;

vesselManagerAddress = vesselManagerAddress;

grvtStaking = IGRVTStaking(grvtStakingAddress) ;
debtTokenAddress = debtTokenAddress;

treasuryAddress = treasuryAddress;

routeToGRVTStaking = routeToGRVTIStaking;

if (_routeToGRVTIStaking && addr: grvtStaking) == address(0)) {
revert FeeCollector InvalidGRVTStakingAddress () ;

}

_Ownable init();

isInitialized = true;

Recommendation:

We advise some basic sanitization to be put in place by ensuring that each specified is non-zero.

Alleviation:

The Gravita Protocol team has opted to not apply a remediation for this exhibit thus rendering it

acknowledged.

FCR-03S: Improper Invocations of EIP-20

Type Severity Location
Standard Conformity FeeCollector.sol:L343, L358
Description:

The linked statement do not properly validate the returned of the EIP-20 standard function.

As the standard dictates, callers must not assume that is never returned.

Impact:

If the code mandates that the returned is [Bang this will cause incompatibility with tokens such as
USDT / Tether as no such is returned to be evaluated causing the check to fail at all times. On the other
hand, if the token utilized can return a [ZEg value under certain conditions but the code does not validate

it, the contract itself can be compromised as having received / sent funds that it never did.

Example:

contracts/FeeCollector.sol

SOL

IDebtToken (debtTokenAddress) .transfer (collector, feeAmount);

https://omniscia.io/reports/gravita-protocol-core-protocol-642b98414a1a960014621fc9/appendix/finding-types#standard-conformity
https://eips.ethereum.org/EIPS/eip-20
https://eips.ethereum.org/EIPS/eip-20#token

Recommendation:

Since not all standardized tokens are EIP-20 compliant (such as Tether / USDT), we advise a safe wrapper
library to be utilized instead such as by OpenZeppelin to opportunistically validate the returned
only if it exists in each instance.

Alleviation:

Both EIP-20 transfer instances now utilize their [EERag-prefixed counterparts, ensuring that they are

performed safely regardless of the underlying EIP-20 implementation.

https://eips.ethereum.org/EIPS/eip-20
https://eips.ethereum.org/EIPS/eip-20
https://eips.ethereum.org/EIPS/eip-20

GravitaMath Static Analysis Findings

GMH-01S: lllegible Numeric Value Representation

Type Severity Location

Code Style GravitaMath.sol:L62, L63

Description:

The linked representation of a numeric literal is sub-optimally represented decreasing the legibility of the

codebase.

Example:

contracts/Dependencies/GravitaMath.sol

SOL

if (_minutes > 525600000)

https://omniscia.io/reports/gravita-protocol-core-protocol-642b98414a1a960014621fc9/appendix/finding-types#code-style

Recommendation:

To properly illustrate the value's purpose, we advise the following guidelines to be followed. For values
meant to depict fractions with a base of ({8, we advise fractions to be utilized directly (i.e. becomes
) as they are supported. For values meant to represent a percentage base, we advise each value to
utilize the underscore () separator to discern the percentage decimal (i.e. becomes [EREIEE)

becomes and so on). Finally, for large numeric values we simply advise the underscore character to be
utilized again to represent them (i.e. becomes EHEREIEEL) -
Alleviation:

The value, now relocated to its dedicated jeoNANIRING declaration, has had the underscore separator

introduced in the correct locations thus alleviating this exhibit.

PriceFeed Static Analysis Findings

PFD-01S: Inexistent Sanitization of Input Addresses

Type Severity Location
Input Sanitization PriceFeed.sol:L54-L67
Description:

The linked function(s) accept arguments yet do not properly sanitize them.

Impact:

The presence of zero-value addresses, especially in implementations, can cause the contract
to be permanently inoperable. These checks are advised as zero-value inputs are a common side-effect of

off-chain software related bugs.

Example:

contracts/PriceFeed.sol

SOL

function setAddresses (
address _adminContract,
_rethToken,
_stethToken,
address wstethToken
xternal initializer ({
require (!isInitialized);

isInitialized = true;

__Ownable init();

adminContract = adminContract;
rethToken = rethToken;
stethToken = stethToken;
wstethToken = wstethToken;

https://omniscia.io/reports/gravita-protocol-core-protocol-642b98414a1a960014621fc9/appendix/finding-types#input-sanitization

Recommendation:

We advise some basic sanitization to be put in place by ensuring that each specified is non-zero.

Alleviation:

The Gravita Protocol team has opted to not apply a remediation for this exhibit thus rendering it

acknowledged.

SortedVessels Static Analysis Findings

SVS-01S: Inexistent Visibility Specifier
Type Severity Location

Code Style SortedVessels.sol:L49

Description:

The linked variable has no visibility specifier explicitly set.

Example:

contracts/SortedVessels.sol

SOL

uint256 constant MAX UINT256 = type (uint256) .max;

https://omniscia.io/reports/gravita-protocol-core-protocol-642b98414a1a960014621fc9/appendix/finding-types#code-style

Recommendation:

We advise one to be set so to avoid potential compilation discrepancies in the future as the current
behaviour is for the compiler to assign one automatically which may deviate between versions.
Alleviation:

The referenced variable is no longer present in the codebase rendering this exhibit no longer applicable.

StabilityPool Static Analysis Findings

SPL-01S: Inexistent Visibility Specifier
Type Severity Location

Code Style StabilityPool.sol:L174

Description:

The linked variable has no visibility specifier explicitly set.

Example:

contracts/StabilityPool.sol

SOL

mapping (address => Colls) pendingCollGains;

https://omniscia.io/reports/gravita-protocol-core-protocol-642b98414a1a960014621fc9/appendix/finding-types#code-style

Recommendation:

We advise one to be set so to avoid potential compilation discrepancies in the future as the current
behaviour is for the compiler to assign one automatically which may deviate between versions.
Alleviation:

The variable is no longer present in the codebase rendering this exhibit no longer
applicable.

SPL-02S: Inexistent Sanitization of Input Addresses

Type Severity Location
Input Sanitization StabilityPool.sol:L242-1.268
Description:

The linked function(s) accept arguments yet do not properly sanitize them.

Impact:

The presence of zero-value addresses, especially in implementations, can cause the contract
to be permanently inoperable. These checks are advised as zero-value inputs are a common side-effect of

off-chain software related bugs.

Example:

contracts/StabilityPool.sol

https://omniscia.io/reports/gravita-protocol-core-protocol-642b98414a1a960014621fc9/appendix/finding-types#input-sanitization

function setAddresses (
address borrowerOperationsAddress,
address vesselManagerAddress,
address _activePoolAddress,
address debtTokenAddress,
address sortedVesselsAddress,
address communityIssuanceAddress,
address _adminContractAddress

) external initializer override {

require (!isInitialized, "StabilityPool: Already initialized");

isInitialized = true;
__Ownable init();

__ReentrancyGuard init();

borrowerOperations = IBorrowerOperations (borrowerOperationsAddress) ;
vesselManager = IVesselManager (vesselManagerAddress) ;

activePool = IActivePool (activePoolAddress) ;

debtToken = IDebtToken (debtTokenAddress) ;

sortedVessels = ISortedVessels(sortedVesselsAddress) ;

communityIssuance = ICommunityIssuance (communityIssuanceAddress) ;

adminContract = IAdminContract (adminContractAddress) ;

= DECIMAL PRECISION;

renounceOwnership () ;

Recommendation:

We advise some basic sanitization to be put in place by ensuring that each specified is non-zero.

Alleviation:

The Gravita Protocol team has opted to not apply a remediation for this exhibit thus rendering it

acknowledged.

VesselManager Static Analysis Findings

VMR-01S: Inexistent Sanitization of Input Addresses

Type Severity Location

Input Sanitization VesselManager.sol:L124-L147

Description:

The linked function(s) accept arguments yet do not properly sanitize them.

Impact:

The presence of zero-value addresses, especially in implementations, can cause the contract
to be permanently inoperable. These checks are advised as zero-value inputs are a common side-effect of

off-chain software related bugs.

Example:

contracts/VesselManager.sol

https://omniscia.io/reports/gravita-protocol-core-protocol-642b98414a1a960014621fc9/appendix/finding-types#input-sanitization

function setAddresses (
address borrowerOperationsAddress,
address stabilityPoolAddress,
address gasPoolAddress,
address collSurplusPoolAddress,
address debtTokenAddress,
address feeCollectorAddress,
address sortedVesselsAddress,
address vesselManagerOperationsAddress,
address adminContractAddress

) external override initializer {
require(!isInitialized, "Already initialized");
isInitialized = true;
__Ownable init ()
borrowerOperations = borrowerOperationsAddress;
stabilityPool = IStabilityPool(stabilityPoolAddress) ;
gasPoolAddress = gasPoolAddress;
collSurplusPool = ICollSurplusPool (collSurplusPoolAddress) ;
debtToken = IDebtToken (debtTokenAddress) ;
feeCollector = IFeeCollector(feeCollectorAddress);

sortedVessels = ISortedVessels(sortedVesselsAddress) ;

vesselManagerOperations = IVesselManagerOperations (vesselManagerOperationsAddresd

adminContract = IAdminContract (adminContractAddress) ;

Recommendation:

We advise some basic sanitization to be put in place by ensuring that each specified is non-zero.

Alleviation:

The Gravita Protocol team has opted to not apply a remediation for this exhibit thus rendering it

acknowledged.

VesselManagerOperations Static Analysis Findings

VMO-01S: lllegible Numeric Value Representations

Type Severity Location

Code Style VesselManagerOperations.sol:L15, L389, L960

Description:

The linked representations of numeric literals are sub-optimally represented decreasing the legibility of the

codebase.

Example:

contracts/VesselManagerOperations.sol

SOL

uint256 public constant REDEMPTION SOFTENING PARAM = 970;

https://omniscia.io/reports/gravita-protocol-core-protocol-642b98414a1a960014621fc9/appendix/finding-types#code-style

Recommendation:

To properly illustrate each value's purpose, we advise the following guidelines to be followed. For values
meant to depict fractions with a base of ({8, we advise fractions to be utilized directly (i.e. becomes
) as they are supported. For values meant to represent a percentage base, we advise each value to
utilize the underscore () separator to discern the percentage decimal (i.e. becomes [EREIEE)

becomes and so on). Finally, for large numeric values we simply advise the underscore character to be

utilized again to represent them (i.e. ERelsJolsJole} becomes EREICIOIele)).

Alleviation:

The Gravita Protocol team has opted to not apply a remediation for this exhibit thus rendering it

acknowledged.

VMO-02S: Inexistent Sanitization of Input Addresses

Type Severity Location
Input Sanitization VesselManagerOperations.sol:L59-L76
Description:

The linked function(s) accept arguments yet do not properly sanitize them.

Impact:

The presence of zero-value addresses, especially in implementations, can cause the contract
to be permanently inoperable. These checks are advised as zero-value inputs are a common side-effect of

off-chain software related bugs.

Example:

contracts/VesselManagerOperations.sol

SOL

function setAddresses (
5 _vesselManagerAddress,

s sortedVesselsAddress,

_collSurplusPoolAddress,

__debtTokenAddress,

_adminContractAddress
cternal initializer {
require(!isInitialized, "Already initialized");
___Ownable init();
vesselManager IVesselManager (_vesselManagerAddress) ;
sortedVessels ISortedVessels (sortedVesselsAddress) ;
stabilityPool IStabilityPool (_stabilityPoolAddress) ;
collSurplusPool = ICollSurplusPool (collSurplusPoolAddress);
debtToken = IDebtToken (debtTokenAddress) ;

adminContract = IAdminContract (adminContractAddress) ;

isInitialized true;

https://omniscia.io/reports/gravita-protocol-core-protocol-642b98414a1a960014621fc9/appendix/finding-types#input-sanitization

Recommendation:

We advise some basic sanitization to be put in place by ensuring that each specified is non-zero.

Alleviation:

The Gravita Protocol team has opted to not apply a remediation for this exhibit thus rendering it

acknowledged.

AdminContract Manual Review Findings

ACT-01M: Improper Reset Functionality

Type Severity Location
Centralization Concern AdminContract.sol:L.279-1L281
Description:

The function permits the configuration of a collateral to be re-set to its
default values, a trait that should not be accessible to a centralized party.

Example:

contracts/AdminContract.so

SOL

function setAsDefault (address collateral) external onlyOwner {

_setAsDefault (collateral);

https://omniscia.io/reports/gravita-protocol-core-protocol-642b98414a1a960014621fc9/appendix/finding-types#centralization-concern
https://github.com/Gravita-Protocol/Gravita-SmartContracts/blob/bfa97cb37dc0e2927e75b36753585140f25a26dd/contracts/AdminContract.sol#L279-L281

Recommendation:

We advise this function to either be omitted from the codebase or locked behind the long timelock to avoid

improper resets of collateral configurations.

Alleviation:

The default values of a collateral parameterization have been relocated to the

 CLER LTI RRPT LI TSI RENRERY function instead, ensuring that these default values cannot be

adjusted and that they are applied in a trustless fashion to each new collateral rather than being set by a

centralized entity. As such, this exhibit has been alleviated as N0 EEHERNSSNLIT RTINS I LENNRS Or similar

mechanism is present in the codebase.

https://github.com/Gravita-Protocol/Gravita-SmartContracts/blob/5e45123d169a126a3055945373421e1bda5515b9/contracts/AdminContract.sol#L160-L202
https://github.com/Gravita-Protocol/Gravita-SmartContracts/blob/5e45123d169a126a3055945373421e1bda5515b9/contracts/AdminContract.sol#L279-L281

ACT-02M: Improper Permission of Collateral Activation

Type Severity Location
Logical Fault AdminContract.sol:L.273-L277
Description:

The EERERNIS RS TLTRRELLERIRIN-ERELNINEY function permits any EIP-20 asset to be configured within the

Gravita Protocol, a trait that is highly undesirable.

Impact:

While a collateral would still need an oracle to be configured for it to behave properly, the ability to
arbitrarily configure a collateral to its default values is an ill-advised trait that can be exploited under ideal

conditions, such as an oracle being initialized prior to the collateral being configured by a timelock vote.

Example:

contracts/AdminContract.so

unction sanitizeParameters (address collateral) external {

if (!collateralParams[collateral].hasCollateralConfigured) {

_setAsDefault (collateral);

https://omniscia.io/reports/gravita-protocol-core-protocol-642b98414a1a960014621fc9/appendix/finding-types#logical-fault
https://github.com/Gravita-Protocol/Gravita-SmartContracts/blob/bfa97cb37dc0e2927e75b36753585140f25a26dd/contracts/AdminContract.sol#L273-L277
https://eips.ethereum.org/EIPS/eip-20

Recommendation:

We advise the code to disallow such an initialization, instead ensuring that the collateral has already been

configured wherever it is invoked (i.e. 2Tl a0 T LU SRS RRRI TSATTIN)
Alleviation:

The EERERNII ASTLTRREPLERIRIN-PEELENINEY function has been omitted from the codebase entirely and the
Y e T T TR AR function that was utilizing it now ensures that the is active at

the instance, rendering this exhibit fully alleviated.

https://github.com/Gravita-Protocol/Gravita-SmartContracts/blob/bfa97cb37dc0e2927e75b36753585140f25a26dd/contracts/BorrowerOperations.sol#L115-L203
https://github.com/Gravita-Protocol/Gravita-SmartContracts/blob/5e45123d169a126a3055945373421e1bda5515b9/contracts/AdminContract.sol#L273-L277
https://github.com/Gravita-Protocol/Gravita-SmartContracts/blob/5e45123d169a126a3055945373421e1bda5515b9/contracts/BorrowerOperations.sol#L115-L203

ACT-03M: Improper Capability of Gas Compensation Adjustment

Type Severity Location
Logical Fault @ Major AdminContract.sol:L376-1L388
Description:

The gas compensation that is provided for Vessels is an integral part of the protocol and must not change
throughout an asset's lifetime as it will retroactively affect existing vessels, potentially causing them to

acquire higher / smaller collateral values than expected.

Impact:

All debt-related functions (i.e. [eRENERET-EVISIRNe PYTelSh i S RTINS
LVCEELYMIERET SN0 TS 2N R EREN B LER. BRI 2 BRAICEL etc.) will be significantly affected by a downward /

upward movement in the gas compensation to a point whereby the system's accounting will become

inaccurate and over-track / under-track the debt of existing vessels.

Example:

contracts/AdminContract.so

SOL

function setDebtTokenGasCompensation (
5 _collateral,

uint256 gasCompensation

public
override
longTimelockOnly

safeCheck ("Gas Compensation", collateral, gasCompensation, 1 ether, 400 ether)

uint256 oldGasComp = collateralParams[collateral] .debtTokenGasCompensation;

collateralParams|[collateral] .debtTokenGasCompensation = gasCompensation;

emit GasCompensationChanged (oldGasComp, gasCompensation) ;

https://omniscia.io/reports/gravita-protocol-core-protocol-642b98414a1a960014621fc9/appendix/finding-types#logical-fault
https://github.com/Gravita-Protocol/Gravita-SmartContracts/blob/bfa97cb37dc0e2927e75b36753585140f25a26dd/contracts/Dependencies/GravitaBase.sol#L35-L37
https://github.com/Gravita-Protocol/Gravita-SmartContracts/blob/bfa97cb37dc0e2927e75b36753585140f25a26dd/contracts/VesselManagerOperations.sol#L609-L646

Recommendation:

We advise this function to be omitted and configuration of the to solely be

permitted during an asset's initialization in the system.

Alleviation:

Our recommended course of action has been applied fully, removing the

AdminContract: : setDebtTokenGasCompensation Jii[slatle]aRifelntRis RS (T WETNAI¢=l\AETalo Mo llanalinale!

configuration of this value solely during a collateral's inclusion to the system via

AdminContract: :addNewCollateral |

https://github.com/Gravita-Protocol/Gravita-SmartContracts/blob/5e45123d169a126a3055945373421e1bda5515b9/contracts/AdminContract.sol#L376-L388
https://github.com/Gravita-Protocol/Gravita-SmartContracts/blob/5e45123d169a126a3055945373421e1bda5515b9/contracts/AdminContract.sol#L160-L202

ERC20Permit Manual Review Findings

ERC-01M: Insecure EIP-2612 Implementation

Type Severity Location
Logical Fault ERC20Permit.sol:L61-L78
Description:

The |aeRXRLInERA contract will calculate the [OURNSNEIAFNINNO Oonly once during its lifetime within its
construcor]

Impact:

While the likelihood of a blockchain fork resulting in a viable chain is very low, the attack vector is trivially

exploitable should this happen and would cause fund loss.

Example:

contracts/Dependencies/ERC20Permit.so

SOL

constructor () {

256 chainID;

chainID := chainid()

DOMAIN SEPARATOR = keccak256 (

abi.encode (
keccak256 (
"EIP712Domain (string name,string version,uint256 chainId,address verif
),
keccak256 (bytes (name ())),
keccak256 (bytes ("1")),
chainID,

address (this)

https://omniscia.io/reports/gravita-protocol-core-protocol-642b98414a1a960014621fc9/appendix/finding-types#logical-fault

Recommendation:

We strongly advise a paradigm similar to OpenZeppelin's to be applied, re-calculating
the with the current on a need-to basis as the contract is currently susceptible

to cross-chain replay attacks should the blockchain it is deployed into be forked.

Alleviation:

The Gravita Protocol team has opted to not apply a remediation for this exhibit thus rendering it

acknowledged.

https://github.com/OpenZeppelin/openzeppelin-contracts/blob/v4.8.2/contracts/token/ERC20/extensions/draft-ERC20Permit.sol

ERC-02M: Insecure Elliptic Curve Recovery Mechanism

Type Severity Location
Language Specific ERC20Permit.sol:L101
Description:

The function is a low-level cryptographic function that should be utilized after appropriate
sanitizations have been enforced on its arguments, namely on the g and g values. This is due to the

inherent trait of the curve to be symmetrical on the x-axis and thus permitting signatures to be replayed with

the same @ value (@) but a different g value (§.

Impact:

Should the payload being verified by the signature rely on differentiation based on the or arguments, it

will be possible to replay the signature for the same data validly and acquire authorization twice.

Example:

contracts/Dependencies/ERC20Permit.sol

https://omniscia.io/reports/gravita-protocol-core-protocol-642b98414a1a960014621fc9/appendix/finding-types#language-specific

function permit (
address owner,
address spender,
uint256 amount,

uint256 deadline,

) public virtual override {

require (block.timestamp <= deadline, "Permit: expired deadline");

hashStruct = keccak256 (

abi.encode (PERMIT TYPEHASH, owner, spender, amount, nonces[owner].current(),

_hash = keccak256 (abi.encodePacked (uintl6 (0x1901), DOMAIN SEPARATOR, hash§

address signer = ecrecover(hash, v, r, s);

require (signer != address(0) && signer == owner, "ERC20Permit: Invalid signature")

_nonces [owner] .increment () ;

_approve (owner, spender, amount);

Recommendation:

We advise them to be sanitized by ensuring that [is equal to either B or BB (ICIKCXIIELD) 2" to

ensure that [§ is existent in the lower half order of the elliptic curve (RIS IR Y

VR RISIRES RGN 0/ FFFFFFFFFFFFFEFFFFFFFFFFFFFFFFFE5D576E7357A4501DDFE92F46681B20A1 A
reference implementation of those checks can be observed in the ECDSA library of OpenZeppelin and the

rationale behind those restrictions exists within Appendix F of the Yellow Paper.

Alleviation:

The library of OpenZeppelin is now in use by the codebase that applies the relevant security checks,
alleviating this exhibit.

https://github.com/OpenZeppelin/openzeppelin-contracts/blob/v4.3.2/contracts/utils/cryptography/ECDSA.sol#L162-L167
https://ethereum.github.io/yellowpaper/paper.pdf

GravitaSafeMath128 Manual Review Findings

GSM-01M: Improper Application of Safe Arithmetics

Type Severity Location
Language Specific GravitaSafeMath128.sol:L9, L17
Description:

The [SENEREEEEIIVERNRAN contract improperly applies "safety” in the [GEAZRECECISTELANPLFRENE] function

by evaluating a conditional after the unsafe operation has been performed. Additionally, the

function will apply a check that guarantees the safety of the ensuing

subtraction, executing it inefficiently.

Example:

contracts/Dependencies/GravitaSafeMath128.sol

SOL

library GravitaSafeMathl28 {
function add(uintl28 a, uintl28 b) internal pure returns (uintl28) ({
uintl28 ¢ = a + b;

require(c >= a, "GravitaSafeMathl28: addition overflow"):;

return c;

function sub (uintl28 a, uintl28 b) internal pure returns (uintl28) {

require (b <= a, "GravitaSafeMathl28: subtraction overflow");

uintl28 ¢ = a - b;

https://omniscia.io/reports/gravita-protocol-core-protocol-642b98414a1a960014621fc9/appendix/finding-types#language-specific
https://github.com/Gravita-Protocol/Gravita-SmartContracts/blob/bfa97cb37dc0e2927e75b36753585140f25a26dd/contracts/Dependencies/GravitaSafeMath128.sol#L8-L13
https://github.com/Gravita-Protocol/Gravita-SmartContracts/blob/bfa97cb37dc0e2927e75b36753585140f25a26dd/contracts/Dependencies/GravitaSafeMath128.sol#L15-L20

Recommendation:

We advise both code blocks to be wrapped in code blocks due to Solidity's built-in safe

arithmetics in versions and up. In the present code, an overflow in [eRa I I e L IR] will

never yield the error message of the check as the overflow would fail immediately during the

addition. As such, the code presently has unreachable statements as well as inefficient code in both of its
functions.
Alleviation:

The contract has been omitted from the codebase entirely as a result of this finding.

As a result, we consider this exhibit alleviated as its described issue is no longer present in the codebase.

https://github.com/Gravita-Protocol/Gravita-SmartContracts/blob/bfa97cb37dc0e2927e75b36753585140f25a26dd/contracts/Dependencies/GravitaSafeMath128.sol#L8-L13

PriceFeed Manual Review Findings

PFD-01M: Significant Centralization of Sensitive Functionality

Type Severity Location

Centralization Concern PriceFeed.sol:L71-L85, L87-L89, L91-1L93

Description:

The oracle system can be adjusted by the owner and / or [ERIiataag Of the Gravita
Protocol system at will.

Example:

contracts/PriceFeed.sol

SOL

function addOracle (
address _token,
address chainlinkOracle,
bool isEthIndexed
) external override isController ({
AggregatorV3Interface newOracle = AggregatorV3Interface(chainlinkOracle);
_validateFeedResponse (newOracle) ;
if (registeredOracles[token].exists) {

uint256 timelockRelease = block.timestamp.add(getOracleUpdateTimelock()) ;

queuedOracles[token] = OracleRecord(newOracle, timelockRelease, true, true,
} else {

registeredOracles|[token] = OracleRecord(newOracle, block.timestamp, true, tr

emit NewOracleRegistered(token, chainlinkOracle, isEthIndexed);

function deleteOracle (address token) external override isController ({

delete registeredOracles[token];

function deleteQueuedOracle (address token) external override isController ({

delete queuedOracles|[token];

https://omniscia.io/reports/gravita-protocol-core-protocol-642b98414a1a960014621fc9/appendix/finding-types#centralization-concern

Recommendation:

We advise these functions to be invoke-able solely by governance mechanisms as they present a significant

centralization threat to the protocol. To note, the oracle update timelock can be bypassed entirely by

invoking iR B AN ENERY followed by ZSRINVERPI LY o trait that should also be

addressed in the system.

Alleviation:

The code was revised to instead ensure that the (now labelled
function can be solely invoked by a timelock instead of a centralized entity. As
such, we consider this exhibit alleviated provided that the timelock is in use by a multi-signature wallet, DAO,

or similar multi-party collective.

https://github.com/Gravita-Protocol/Gravita-SmartContracts/blob/bfa97cb37dc0e2927e75b36753585140f25a26dd/contracts/PriceFeed.sol#L87-L89
https://github.com/Gravita-Protocol/Gravita-SmartContracts/blob/bfa97cb37dc0e2927e75b36753585140f25a26dd/contracts/PriceFeed.sol#L71-L85
https://github.com/Gravita-Protocol/Gravita-SmartContracts/blob/5e45123d169a126a3055945373421e1bda5515b9/contracts/PriceFeed.sol#L71-L85

PFD-02M: Incorrect Error Handling

Type Severity Location
Logical Fault PriceFeed.sol:L281
Description:

The clause of the first @Iy lallls) PriceFeed: : fetchCurrentFeedResponse [H

incorrect as it will continue execution of the function. As such, if the does not implement
the function but implements the function it will be accepted by the contract as

correct with a decimal accuracy of@ incorrectly.

Impact:

The potential of an aggregator supporting the function but not the one is
inexistent, however, custom oracle implementations may fall into this category and would cause the system

to misbehave greatly.

Example:

contracts/PriceFeed.sol

https://omniscia.io/reports/gravita-protocol-core-protocol-642b98414a1a960014621fc9/appendix/finding-types#logical-fault
https://github.com/Gravita-Protocol/Gravita-SmartContracts/blob/bfa97cb37dc0e2927e75b36753585140f25a26dd/contracts/PriceFeed.sol#L274-L294

function fetchCurrentFeedResponse (AggregatorV3Interface priceAggregator)

internal
view

returns (FeedResponse memory response)

try priceAggregator.decimals() returns (uint8 decimals) {
response.decimals = decimals;

} catch {}

try priceAggregator.latestRoundData () returns (
uint80 roundId,

.

int256 answer,
uint256

timestamp,

response.roundId = roundId;
response.answer = answer;
response.timestamp = timestamp;
response.success = true;

} catch {}

Recommendation:

We advise the code to instead yield directly in the first clause, ensuring that the Chainlink
response is treated as invalid if the feed does not support the function similarly to the Liquity

implementation.

Alleviation:

The code was updated to yield the empty akin to the block of the

invocation, ensuring that the code properly fails if the function is not supported by the Chainlink

oracle being added.

PFD-03M: Inexistent Initialization of Price

Type Severity Location
Logical Fault PriceFeed.sol:L71-L85
Description:

The registration of an oracle to the system via does not set an initial price for the
asset in contrast to the Liquity implementation. As such, if (RS g R aa s Ty is invoked when the

Chainlink oracle stops behaving properly the yielded will be [§J incorrectly.

Impact:

If an oracle is added to the system and immediately stops behaving properly, the
function will yield an incorrect price of ﬂ that will be consumed by its callers.

Example:

contracts/PriceFeed.sol

SOL

function addOracle (

s chainlinkOracle,
bool isEthIndexed
external override isController {
AggregatorV3Interface newOracle = AggregatorV3Interface(chainlinkOracle);
_validateFeedResponse (newOracle) ;
if (registeredOracles[token].exists) {

uint256 timelockRelease = block.timestamp.add(getOracleUpdateTimelock()) ;

queuedOracles[token] = OracleRecord(newOracle, timelockRelease, true, true,
} else {

registeredOracles|[token] = OracleRecord(newOracle, block.timestamp, true, tr

emit NewOracleRegistered(token, chainlinkOracle, isEthIndexed);

https://omniscia.io/reports/gravita-protocol-core-protocol-642b98414a1a960014621fc9/appendix/finding-types#logical-fault
https://github.com/Gravita-Protocol/Gravita-SmartContracts/blob/bfa97cb37dc0e2927e75b36753585140f25a26dd/contracts/PriceFeed.sol#L71-L85
https://github.com/Gravita-Protocol/Gravita-SmartContracts/blob/bfa97cb37dc0e2927e75b36753585140f25a26dd/contracts/PriceFeed.sol#L97-L133
https://github.com/Gravita-Protocol/Gravita-SmartContracts/blob/bfa97cb37dc0e2927e75b36753585140f25a26dd/contracts/PriceFeed.sol#L97-L133

Recommendation:

We advise the function to set the latest good price as well, ensuring that the system

will behave properly under all circumstances.

Alleviation:

The PZITILCERELESEIEY (now labelled EISRCSFCIRRRISAet=YARY) fuNCtion now properly extracts and

consumes the most recent responses of the Chainlink oracle being added, rendering the behaviour outlined

in the exhibit impossible in the latest iteration of the codebase.

https://github.com/Gravita-Protocol/Gravita-SmartContracts/blob/bfa97cb37dc0e2927e75b36753585140f25a26dd/contracts/PriceFeed.sol#L71-L85
https://github.com/Gravita-Protocol/Gravita-SmartContracts/blob/5e45123d169a126a3055945373421e1bda5515b9/contracts/PriceFeed.sol#L71-L85

PFD-04M: Incorrect Lido Staked ETH Value Assumption

Type Severity Location
Logical Fault PriceFeed.sol:L171
Description:

The referenced statement will attempt to query the price using a USD oracle and if it does not exist, it
will treat the equivalent of the as one-to-one interchangeable with thus using the price
of to calculate the price of the value.

Impact:

The arbitrage opportunities introduced can lead to the creation of bad debt in the system and can be

exaggerated via flash-loans.

Example:

contracts/PriceFeed.sol

SOL

function fetchNativeWstETHPrice () internal returns (uint256 price) {

uint256 wstEthToStEthValue = getWstETH StETHValue () ;
OracleRecord storage stEth UsdOracle = registeredOracles[stethToken];
price = stEth UsdOracle.exists ? this.fetchPrice(stethToken) : calcEthPrice (wstEf

_storePrice (wstethToken, price);

https://omniscia.io/reports/gravita-protocol-core-protocol-642b98414a1a960014621fc9/appendix/finding-types#logical-fault

Recommendation:

We advise this fallback mechanism to be omitted as staked counterparts of always trade at either a

premium or a loss in comparison to the actual SN INlo)l PriceFeed: : fetchNativeWstETHPrice

to introduce arbitrage opportunities.

Alleviation:

Assets that relate to wrapped are no longer treated as a special case by the oracle, instead

utilizing the traditional Chainlink-related methodology to assess their price. As such, we consider this exhibit

fully alleviated.

https://github.com/Gravita-Protocol/Gravita-SmartContracts/blob/bfa97cb37dc0e2927e75b36753585140f25a26dd/contracts/PriceFeed.sol#L168-L173

PFD-05M: Incorrect Lido Staked ETH Price Usage

Type Severity Location
Logical Fault @ Major PriceFeed.sol:L171
Description:

The referenced statement will fetch the price of the token and store it as the price of the

token which is incorrect.

Impact:

The price reported per unit of [iaaaa will always be incorrect if a USD oracle has been defined for as

it will yield the price of and not (e

Example:

contracts/PriceFeed.sol

SOL

function fetchNativeWstETHPrice () internal returns (uint256 price) {
uint256 wstEthToStEthValue = getWstETH StETHValue () ;

OracleRecord storage stEth UsdOracle = registeredOracles[stethToken];

price = stEth UsdOracle.exists ? this.fetchPrice(stethToken) : calcEthPrice (wstEf

_storePrice (wstethToken, price);

Recommendation:

We advise the of the token fetched to be multiplied by the as it

represents the exchange rate between and the former's price being what we are interested

in.
Alleviation:

Assets that relate to wrapped are no longer treated as a special case by the oracle, instead
utilizing the traditional Chainlink-related methodology to assess their price. As such, we consider this exhibit

fully alleviated.

https://omniscia.io/reports/gravita-protocol-core-protocol-642b98414a1a960014621fc9/appendix/finding-types#logical-fault

SafeMath Manual Review Findings

SMH-01M: Improper Application of Safe Arithmetics

Type Severity Location

Language Specific SafeMath.sol:L32, L68, L90

Description:

The contract improperly applies "safety” in the (eI e R L] and functions by

evaluating a conditional after each unsafe operation has been performed. Additionally, the
function will apply a check that guarantees the safety of the ensuing subtraction,

executing it inefficiently.

Example:

contracts/Dependencies/SafeMath.sol

https://omniscia.io/reports/gravita-protocol-core-protocol-642b98414a1a960014621fc9/appendix/finding-types#language-specific
https://github.com/Gravita-Protocol/Gravita-SmartContracts/blob/bfa97cb37dc0e2927e75b36753585140f25a26dd/contracts/Dependencies/SafeMath.sol#L31-L36
https://github.com/Gravita-Protocol/Gravita-SmartContracts/blob/bfa97cb37dc0e2927e75b36753585140f25a26dd/contracts/Dependencies/SafeMath.sol#L82-L94
https://github.com/Gravita-Protocol/Gravita-SmartContracts/blob/bfa97cb37dc0e2927e75b36753585140f25a26dd/contracts/Dependencies/SafeMath.sol#L47-L49

function sub (
uint256 a,
uint256 b,
string memory errorMessage
) internal pure returns (uint256) {
require (b <= a, errorMessage);

uint256 ¢ = a - b;

return c;

function mul (uint256 a, uint256 b) internal pure returns (uint256) {

uint256 ¢ = a * b;

require(c / a == b, "mul overflow");

return c;

Recommendation:

We advise both code blocks to be wrapped in code blocks due to Solidity's built-in safe

arithmetics in versions and up. In the present code, an overflow in [y el / Bt o

will never yield the error message of the check as the overflow would fail immediately during
the addition / multiplication. As such, the code presently has unreachable statements as well as inefficient

code in all of its functions.

Alleviation:

The contract has been omitted from the codebase entirely as a result of this finding. As a result,

we consider this exhibit alleviated as its described issue is no longer present in the codebase.

https://github.com/Gravita-Protocol/Gravita-SmartContracts/blob/bfa97cb37dc0e2927e75b36753585140f25a26dd/contracts/Dependencies/SafeMath.sol#L31-L36
https://github.com/Gravita-Protocol/Gravita-SmartContracts/blob/bfa97cb37dc0e2927e75b36753585140f25a26dd/contracts/Dependencies/SafeMath.sol#L82-L94

SafetyTransfer Manual Review Findings

STR-01M: Incorrect Decimal Assumption

Type Severity Location
Logical Fault SafetyTransfer.sol:L21
Description:

The N T T e T ey function will misbehave if the has decimals that are

greater than the value of .

Impact:

The decimal correction mechanism will be incorrect in tokens with abnormal decimals, yielding significantly

less values than expected.

Example:

contracts/Dependencies/SafetyTransfer.sol

SOL

function decimalsCorrection (address token, uint256 amount)
internal
view

returns (uint256)

if (_token == address(0)) return amount;

if (_amount == 0) return O;

uint8 decimals = ERC20Decimals (_ token) .decimals () ;

if (decimals < 18) {

return amount.div(10** (18 - decimals));

return amount;

https://omniscia.io/reports/gravita-protocol-core-protocol-642b98414a1a960014621fc9/appendix/finding-types#logical-fault
https://github.com/Gravita-Protocol/Gravita-SmartContracts/blob/bfa97cb37dc0e2927e75b36753585140f25a26dd/contracts/Dependencies/SafetyTransfer.sol#L12-L26

Recommendation:

We advise the code to introduce an branch that evaluates whether is greater-than (g the
value of [in which case it should offset the via a multiplication rather than division.

Alleviation:

The of a token are properly handled by the 2T e TR L Lo T oerer function as

they are normalized in either an upwards or downwards trajectory depending on whether the decimals

exceed the default value of or subceed it.

https://github.com/Gravita-Protocol/Gravita-SmartContracts/blob/5e45123d169a126a3055945373421e1bda5515b9/contracts/Dependencies/SafetyTransfer.sol#L12-L26

STR-02M: Insecure Conversion of Amount

Type Severity Location
Mathematical Operations @ Major SafetyTransfer.sol:L22
Description:

The EE XA T rE 1Y BT [YoEE FURToL P2 XI X RS fUNCtion is utilized to assess how much funds should be

transferred. As such, it is possible to specify a value that will truncate to a when "normalized" to the token's

decimal accuracy, permitting deposits of zero funds to acquire a non-zero effective value in the protocol.

Impact:

It is currently possible to trick functions such as (IS SEETERISREREITE RN LIPS LSRR t0 perform a

zero-value transfer yet credit a non-zero deposit value to the caller, significantly compromising the

operational integrity of the protocol.

Example:

contracts/Dependencies/SafetyTransfer.sol

SOL

function decimalsCorrection (address token, uint256 amount)
internal

view

returns (uint256)

if (_token == address(0)) return amount;

if (_amount == 0) return O;

uint8 decimals = ERC20Decimals(token) .decimals();

if (decimals < 18) {

return amount.div (10** (18 - decimals));

return amount;

https://omniscia.io/reports/gravita-protocol-core-protocol-642b98414a1a960014621fc9/appendix/finding-types#mathematical-operations
https://github.com/Gravita-Protocol/Gravita-SmartContracts/blob/bfa97cb37dc0e2927e75b36753585140f25a26dd/contracts/Dependencies/SafetyTransfer.sol#L12-L26
https://github.com/Gravita-Protocol/Gravita-SmartContracts/blob/bfa97cb37dc0e2927e75b36753585140f25a26dd/contracts/BorrowerOperations.sol#L524-L535

Recommendation:

We advise the code to mandate that modulo () the divisor (i.e. TR <duals

zero, preventing impossible deposit values from being specified.

Alleviation:

The EERIARSTLEF IS FRYENEE EURIoL IS NTERSY function will now validate that the amount being converted is

fully divisible via a modulo) operator, ensuring that the code will never yield assets that are less than the

expected amount.

https://github.com/Gravita-Protocol/Gravita-SmartContracts/blob/5e45123d169a126a3055945373421e1bda5515b9/contracts/Dependencies/SafetyTransfer.sol#L12-L26

SortedVessels Manual Review Findings

SVS-01M: Insecure Data List Size Enforcement

Type Severity Location

Logical Fault SortedVessels.sol:L121-L123

Description:

The FRISINA IS function will set the of an asset's linked list to the maximum of [FERRaaEs

insecurely, enabling Denial-of-Service attacks to manifest.

Impact:

The overall list is utilized by off-chain components as per the Gravita Finance team. As such, the impact of
this exhibit is negligible and has been downgraded to severity.

Example:

contracts/SortedVessels.sol

SOL

if (data[asset].maxSize == 0) {

data[asset].maxSize = MAX UINT256;

https://omniscia.io/reports/gravita-protocol-core-protocol-642b98414a1a960014621fc9/appendix/finding-types#logical-fault

Recommendation:

While the blockchain that the Gravita Protocol will be deployed in may have significantly less gas costs than
its Liquity counterpart, it still needs to apply an upper bound as regardless of the cost of executing a
transaction, there is an inherent block gas limit that needs to be respected. As such, we advise a higher

than Liquity but still sensible bound to be applied to avoid Denial-of-Service attacks.

Alleviation:

While the "unlimited" limit is no longer set for the variable of the list, no max size is
set and the function is no longer utilized by the code. The Gravita Finance team

has opted to acknowledge this exhibit as the function is purely utilized for off-chain purposes.

https://github.com/Gravita-Protocol/Gravita-SmartContracts/blob/5e45123d169a126a3055945373421e1bda5515b9/contracts/SortedVessels.sol#L259-L261

StabilityPool Manual Review Findings

SPL-01M: Inexistent Normalization of Asset

Type Severity Location

Logical Fault @ unknown StabilityPool.sol:L801

Description:

The
when transferring the in contrast to the rest of the codebase.

T IR S I L L e R g function will not attempt to normalize the value

Impact:

Presently, the code will misbehave if non-18 decimal assets are introduced to which is
permitted and actually expected by some of the contracts in the system. If it is a business requirement to

support unwrapped non-18 decimal assets, this finding will be upgraded in severity to "major".

Example:

contracts/StabilityPool.sol

https://omniscia.io/reports/gravita-protocol-core-protocol-642b98414a1a960014621fc9/appendix/finding-types#logical-fault
https://github.com/Gravita-Protocol/Gravita-SmartContracts/blob/bfa97cb37dc0e2927e75b36753585140f25a26dd/contracts/StabilityPool.sol#L787-L808

function sendGainsToDepositor (

address _to,

address[] memory assets,

uint256[] memory amounts
) internal {

uint256 assetsLen = assets.length;

require (assetslen == amounts.length, "StabilityPool: Length mismatch") ;
for (uint256 i = 0; i1 < assetsLen; ++i) {

uint256 amount = amounts([i];

if (amount == 0) {

continue;

assets[i];

IERC20Upgradeable (asset) .safeTransferFrom(address (this), to, amount);

}
totalColl.amounts = leftSubColls(totalColl, assets, amounts);

Colls memory tempPendingCollGains;

pendingCollGains[to] = tempPendingCollGains;

Recommendation:

We advise the code to be streamlined, either normalizing the amount in

CLEV R E R JIY RV L LR R L SN EERAEY O ensuring that only wrapped assets are introduced to the
 CHER NSNS LT RREL LN ISIRETILEWY function by evaluating their decimals.

Alleviation:

The decimals of newly introduced assets via LERERIIIELLILIEEEIE N RNJIBELIIENN ore now mandated to be

equal to CEENIRIAeRIRg. streamlining the codebase and thus alleviating this exhibit as a result.

https://github.com/Gravita-Protocol/Gravita-SmartContracts/blob/bfa97cb37dc0e2927e75b36753585140f25a26dd/contracts/StabilityPool.sol#L787-L808
https://github.com/Gravita-Protocol/Gravita-SmartContracts/blob/bfa97cb37dc0e2927e75b36753585140f25a26dd/contracts/AdminContract.sol#L160-L202
https://github.com/Gravita-Protocol/Gravita-SmartContracts/blob/5e45123d169a126a3055945373421e1bda5515b9/contracts/AdminContract.sol#L160-L202

Timelock Manual Review Findings

TKC-01M: Inexistent Prevention of Duplicate Invocations

Type Severity Location

Logical Fault Timelock.sol:L106-L125, L127-L138

Description:

Based on the implementation of the Gravita Protocol codebase, the contract is expected to be
managed by an EOA / multi-signature wallet rather than an on-chain decentralized smart contract. As such,

calls to it aren't restricted similarly to how DAOs prevent the same payload to be queued again.

Impact:

It is presently possible to emit events that do not correspond to the real state of the [lueitesl cancelling a
transaction that has already been executed thus breaking the guarantee that a event is

meant to indicate the transaction has not been executed and has been cancelled.

Example:

contracts/Timelock.sol

https://omniscia.io/reports/gravita-protocol-core-protocol-642b98414a1a960014621fc9/appendix/finding-types#logical-fault

function cancelTransaction (
address target,
uint value,
string memory signature,
bytes memory data,
uint eta
) public adminOnly {
bytes32 txHash = keccak256 (abi.encode (target, value, signature, data, eta));

queuedTransactions[txHash] = false;

emit CancelTransaction (txHash, target, value, signature, data, eta);

function executeTransaction (
address target,
uint value,
string memory signature,
bytes memory data,
uint eta
) public payable adminOnly returns (bytes memory) ({
bytes32 txHash = keccak256 (abi.encode (target, value, signature, data, eta));
if (!queuedTransactions|[txHash]) {
revert Timelock TxNoQueued() ;
}
if (getBlockTimestamp () < eta) {
revert Timelock TxStillLocked():;
}
if (getBlockTimestamp () > eta + GRACE PERIOD) {

revert Timelock TxExpired();

queuedTransactions [txHash] = false;

bytes memory callData;

if (bytes (signature) .length == 0) {
callData = data;
} else {

callData = abi.encodePacked (bytes4 (keccak256 (bytes (signature))), data);

(bool success, bytes memory returnData) = target.call{ value: value } (callData);
if (!success) {

revert Timelock TxReverted():;

emit ExecuteTransaction (txHash, target, value, signature, data, eta);

return returnData;

Recommendation:

We advise the code of transaction queueing and transaction cancelling to prevent execution if the

transaction is already queued or already cancelled respectively. This will prevent misleading

and [RISEETRErIaERI cvents from being emitted, such as a transaction actually
being executed by REETNRIIERFPRIEIIN SLLEELIRRIN and then "cancelled” by
SR CNRCYS) FRYELIIN R $LLEEYAERS cven though it has already been executed.

Alleviation:

The queue status of a transaction is now sanitized in all statements that adjust it, ensuring that it solely

transitions from an unqueued to a queued state and vice versa.

https://github.com/Gravita-Protocol/Gravita-SmartContracts/blob/bfa97cb37dc0e2927e75b36753585140f25a26dd/contracts/Timelock.sol#L140-L177
https://github.com/Gravita-Protocol/Gravita-SmartContracts/blob/bfa97cb37dc0e2927e75b36753585140f25a26dd/contracts/Timelock.sol#L127-L138

ActivePool Code Style Findings

APL-01C: Inefficient Renunciation of Ownership

Type Severity Location

Gas Optimization ActivePool.sol:L105

Description:

IS ActivePool: : setAddresses QIVGTlIaRVIIRIWICRINEN OwvnableUpgradeable: : renounceOwnership

function which in turn will apply the modifier redundantly.

Example:

contracts/ActivePool.so

SOL

function setAddresses (
address borrowerOperationsAddress,
address collSurplusPoolAddress,
address defaultPoolAddress,
address _stabilityPoolAddress,
address vesselManagerAddress,
address vesselManagerOperationsAddress
) external initializer ({
require (!isInitialized, "Already initialized");

isInitialized = true;

__Ownable init();
__ReentrancyGuard init();

borrowerOperationsAddress = borrowerOperationsAddress;
collSurplusPool = ICollSurplusPool (collSurplusPoolAddress) ;
defaultPool = IDefaultPool(defaultPoolAddress);

stabilityPoolAddress _stabilityPoolAddress;

vesselManagerAddress _vesselManagerAddress;

vesselManagerOperationsAddress = vesselManagerOperationsAddress;

renounceOwnership () ;

https://omniscia.io/reports/gravita-protocol-core-protocol-642b98414a1a960014621fc9/appendix/finding-types#gas-optimization
https://github.com/Gravita-Protocol/Gravita-SmartContracts/blob/bfa97cb37dc0e2927e75b36753585140f25a26dd/contracts/ActivePool.sol#L84-L106

Recommendation:

We advise the (Il RRNueleFacts LT NR-TINIR VTSR SaeliettaXebhe] fLINCtiON tO be utilized directly, transferring

ownership to the zero address.

Alleviation:

Ownership of the contract is no longer renounced in the latest iteration of the codebase rendering this

exhibit inapplicable.

APL-02C: Inexplicable Ownable Pattern

Type Severity Location

Gas Optimization ActivePool.sol:L95, L105

Description:

The inherits the (R EET I LTI implementation redundantly as it initializes it within the
p NIRRT TN BTN PR function and consequently renounces ownership in the same call.

Example:

contracts/ActivePool.so

SOL

function setAddresses (
address borrowerOperationsAddress,
address collSurplusPoolAddress,
address defaultPoolAddress,
address stabilityPoolAddress,
address vesselManagerAddress,
address vesselManagerOperationsAddress
) external initializer ({
require (!isInitialized, "Already initialized");

isInitialized = true;

__Ownable init();

__ReentrancyGuard init();

borrowerOperationsAddress = borrowerOperationsAddress;
collSurplusPool = ICollSurplusPool (collSurplusPoolAddress);
defaultPool = IDefaultPool (defaultPoolAddress) ;
stabilityPoolAddress = stabilityPoolAddress;
vesselManagerAddress = vesselManagerAddress;

vesselManagerOperationsAddress = vesselManagerOperationsAddress;

renounceOwnership () ;

https://omniscia.io/reports/gravita-protocol-core-protocol-642b98414a1a960014621fc9/appendix/finding-types#gas-optimization
https://github.com/Gravita-Protocol/Gravita-SmartContracts/blob/bfa97cb37dc0e2927e75b36753585140f25a26dd/contracts/ActivePool.sol#L84-L106

Recommendation:

We advise it to be removed, inheriting the implementation of OpenZeppelin instead which

is properly put in use within the contract.

Alleviation:

While the renunciation has been removed, the contract is still inherited by the

EEEREE To properly alleviate this exhibit, we advise the [EI IR Ity contract to be omitted
from the entirely.

APL-03C: Redundant Initialization Paradigm

Type Severity Location

Gas Optimization ActivePool.sol:L91-193

Description:

The contract inherits the OpenZeppelin [N implementation which contains
the PRERSENREEIIRY i nplementation, put in use within the EXTERENIY RIS CEEXEEREE] function. As such,
the manual flag is redundant.

Example:

contracts/ActivePool.so

SOL

function setAddresses (
address borrowerOperationsAddress,
address collSurplusPoolAddress,
address defaultPoolAddress,
address stabilityPoolAddress,
address vesselManagerAddress,
address vesselManagerOperationsAddress
) external initializer {
require (!isInitialized, "Already initialized");

isInitialized = true;

__ Ownable init();

__ReentrancyGuard init();

borrowerOperationsAddress = borrowerOperationsAddress;
collSurplusPool = ICollSurplusPool (collSurplusPoolAddress) ;
defaultPool = IDefaultPool (defaultPoolAddress) ;
stabilityPoolAddress = stabilityPoolAddress;
vesselManagerAddress = vesselManagerAddress;

vesselManagerOperationsAddress = vesselManagerOperationsAddress;

renounceOwnership () ;

https://omniscia.io/reports/gravita-protocol-core-protocol-642b98414a1a960014621fc9/appendix/finding-types#gas-optimization
https://github.com/Gravita-Protocol/Gravita-SmartContracts/blob/bfa97cb37dc0e2927e75b36753585140f25a26dd/contracts/ActivePool.sol#L84-L106

Recommendation:

We advise it and its validations to be omitted from the codebase as it is ineffectual and duplicates the
purpose of the EEERSENEFLIIREREREREERERta M Odifier.

Alleviation:

The manual initialization methodology has been removed from the contract as advised.

AdminContract Code Style Findings

ACT-01C: Inefficient Lookups

Type Severity Location

AdminContract.sol:L294, L295, L323-1L324, L338-L339, L353-L354,

SO0 L 1368, L371, L385-L386, L399-L400, L414, L417, L422, L425

Description:

The linked statements perform key-based lookup operations on declarations from storage multiple

times for the same key redundantly.

Example:

contracts/AdminContract.so

SOL

function setAsDefaultWithRemptionBlock (
address collateral,

uint256 blockInDays

external

onlyOwner

if (blockInDays > 14) {
blockInDays = REDEMPTIONiBLOCKiDAY;

if (collateralParams|[collateral].redemptionBlock == 0) {

collateralParams|[collateral] .redemptionBlock = block.timestamp + (blockInDayf

_setAsDefault (collateral);

https://omniscia.io/reports/gravita-protocol-core-protocol-642b98414a1a960014621fc9/appendix/finding-types#gas-optimization

Recommendation:

As the lookups internally perform an expensive operation, we advise the lookups to be cached

wherever possible to a single local declaration that either holds the value of the in case of primitive
types or holds a pointer to the contained.
Alleviation:

All inefficient lookups have been significantly optimized per our recommendation, rendering this

exhibit fully alleviated.

ACT-02C: Inexistent Error Message

Type Severity Location
Code Style AdminContract.sol:L144
Description:

The linked check has no error message explicitly defined.

Example:

contracts/AdminContract.so

SOL

require (!isInitialized);

https://omniscia.io/reports/gravita-protocol-core-protocol-642b98414a1a960014621fc9/appendix/finding-types#code-style

Recommendation:

We advise one to be set so to increase the legibility of the codebase and aid in validating the
check's condition.

Alleviation:

An error message has been properly introduced to the referenced check as advised.

ACT-03C: Loop Iterator Optimizations

Type Severity Location
Gas Optimization AdminContract.sol:L214, L245
Description:

The linked loops increment / decrement their iterator "safely” due to Solidity's built - in safe arithmetics

(post (RERED).

Example:

contracts/AdminContract.so

SOL

for (uint256 i = 0; i < collaterals.length; it++) {

https://omniscia.io/reports/gravita-protocol-core-protocol-642b98414a1a960014621fc9/appendix/finding-types#gas-optimization

Recommendation:

We advise the increment / decrement operations to be performed in an code block as the last
statement within each loop to optimize their execution cost.

Alleviation:

The loop iterator increments have been optimized as advised, however, their counterpart is utilized

instead of . We advise the latter to be set in use as it is more optimal than the present code.

ACT-04C: Misleading Variable Name

Type Severity Location
Code Style AdminContract.sol:L294-L295
Description:

Y redemptionBlock RARUE of a given asset does not represent blocks and instead
I RIS I VTe [l le=le Mgl AdminContract: : setAsDefaul tWithRemptionBlock [Elgfe!

VesselManagerOperations::_ validateRedemptionRequirements }

Example:

contracts/AdminContract.so

SOL

function setAsDefaultWithRemptionBlock (
5 _collateral,

blockInDays
onlyOwner
if (blockInDays > 14) {

blockInDays = REDEMPTION BLOCK DAY;

if (collateralParams[collateral].redemptionBlock == 0) {

collateralParams|[collateral].redemptionBlock = block.timestamp + (blockInDayf

_setAsDefault (collateral);

https://omniscia.io/reports/gravita-protocol-core-protocol-642b98414a1a960014621fc9/appendix/finding-types#code-style
https://github.com/Gravita-Protocol/Gravita-SmartContracts/blob/bfa97cb37dc0e2927e75b36753585140f25a26dd/contracts/AdminContract.sol#L283-L299
https://github.com/Gravita-Protocol/Gravita-SmartContracts/blob/bfa97cb37dc0e2927e75b36753585140f25a26dd/contracts/VesselManagerOperations.sol#L911-L938

Recommendation:
We advise the data point to be aptly renamed to illustrate that it represents time rather than blocks, avoiding

potential confusion when reading the codebase.

Alleviation:

The EaSCISUSIERIN:IRIeEY Variable was renamed to FaYe i mReIN:RR IV URR R e, i||Ustrating the variable's

purpose in a clearer way.

BorrowerOperations Code Style Findings

BOS-01C: Ineffectual Native Value Check

Type Severity Location
Gas Optimization BorrowerOperations.sol:L582
Description:

Jl4le] BorrowerOperations: : requireNonZeroAdjustment RiV[alailelsRIINIVEIIVE AV aIS1da =T e a1 is

non-zero, however, such a case is impossible in the codebase as the functions it is invoked in are not

oayanic]
Example:

contracts/BorrowerOperations.sol

SOL

function requireNonZeroAdjustment (
uint256 collWithdrawal,
uint: _debtTokenChange,
uint256 assetSent

) internal view {
require (

msg.value != 0 || collWithdrawal != 0 || debtTokenChange != 0 || _assetSent

"BorrowerOps: There must be either a collateral change or a debt change"

https://omniscia.io/reports/gravita-protocol-core-protocol-642b98414a1a960014621fc9/appendix/finding-types#gas-optimization
https://github.com/Gravita-Protocol/Gravita-SmartContracts/blob/bfa97cb37dc0e2927e75b36753585140f25a26dd/contracts/BorrowerOperations.sol#L576-L585

Recommendation:

We advise this part of the conditional to be safely omitted, optimizing its gas cost.

Alleviation:

The evaluation was removed from the function, optimizing its gas cost and permitting it to be

set to feitas).

BOS-02C: Redundant Native Value Check

Type Severity Location
Gas Optimization BorrowerOperations.sol:L291
Description:

The 32U TLENE R ERERFI R RELASEERNY function will mandate that the is zero, however, it is

impossible to be otherwise due to the function's invocation in non-payable contexts.

Example:

contracts/BorrowerOperations.sol

SOL

require (msg.value == 0, "BorrowerOps: msg.value must be zero");

https://omniscia.io/reports/gravita-protocol-core-protocol-642b98414a1a960014621fc9/appendix/finding-types#gas-optimization
https://github.com/Gravita-Protocol/Gravita-SmartContracts/blob/bfa97cb37dc0e2927e75b36753585140f25a26dd/contracts/BorrowerOperations.sol#L281-L389

Recommendation:

We advise the referenced check to be safely omitted from the code, optimizing its gas cost.

Alleviation:

The redundant check has been safely removed from the codebase as advised.

BOS-03C: Suboptimal Struct Declaration Styles

Type Severity Location
Code Style BorrowerOperations.sol:L124, L292
Description:

The linked declaration styles of the referenced structs are using index-based argument initialization.

Example:

contracts/BorrowerOperations.sol

SOL

ContractsCache memory contractsCache = ContractsCache (vesselManager, adminContract.act

https://omniscia.io/reports/gravita-protocol-core-protocol-642b98414a1a960014621fc9/appendix/finding-types#code-style

Recommendation:

We advise the key-value declaration format to be utilized instead in each instance, greatly increasing the
legibility of the codebase.

Alleviation:

The key-value declaration style is now in use in both referenced instances of the exhibit, addressing it in full.

CollSurplusPool Code Style Findings

CSP-01C: Inefficient Renunciation of Ownership

Type Severity Location
Gas Optimization CollSurplusPool.sol:L48
Description:

The [IREE IR LY IEREIN S -V EIXFTNY function will invoke the
OwnableUpgradeable: : renounceOwnership iVlalailelalW il sRIs R (U IFaRWII|R=ToTo]\YARa1E modifier

redundantly.

Example:

contracts/CollSurplusPool.so

SOL

function setAddresses (
address activePoolAddress,
addre _borrowerOperationsAddress,
addr _vesselManagerAddress,
address vesselManagerOperationsAddress
) external override initializer {
require (!isInitialized, "Already initialized");

isInitialized = true;
__Ownable init();
activePoolAddress = activePoolAddress;

borrowerOperationsAddress = borrowerOperationsAddress;

vesselManagerAddress = vesselManagerAddress;

vesselManagerOperationsAddress = vesselManagerOperationsAddress;

renounceOwnership () ;

https://omniscia.io/reports/gravita-protocol-core-protocol-642b98414a1a960014621fc9/appendix/finding-types#gas-optimization
https://github.com/Gravita-Protocol/Gravita-SmartContracts/blob/bfa97cb37dc0e2927e75b36753585140f25a26dd/contracts/CollSurplusPool.sol#L32-L49

Recommendation:

We advise the (Il RRNueleFacts LT NR-TINIR VTSR SaeliettaXebhe] fLINCtiON tO be utilized directly, transferring

ownership to the zero address.

Alleviation:

Ownership of the contract is no longer renounced in the latest iteration of the codebase rendering this

exhibit inapplicable.

CSP-02C: Inefficient Lookups

Type Severity Location
Gas Optimization CollSurplusPool.sol:L70, L71, L78, L80, L84
Description:

The linked statements perform key-based lookup operations on declarations from storage multiple

times for the same key redundantly.

Example:

contracts/CollSurplusPool.so

SOL

function accountSurplus (
address asset,
addre _account,
uint256 amount
xternal override ({

_requireCallerIsVesselManager () ;

uint256 newAmount = userBalances[account] [asset].add(amount) ;

userBalances[account] [asset] = newAmount;

emit CollBalanceUpdated(account, newAmount) ;

https://omniscia.io/reports/gravita-protocol-core-protocol-642b98414a1a960014621fc9/appendix/finding-types#gas-optimization

Recommendation:

As the lookups internally perform an expensive operation, we advise the lookups to be cached

wherever possible to a single local declaration that either holds the value of the in case of primitive
types or holds a pointer to the contained.
Alleviation:

All inefficient lookups have been significantly optimized per our recommendation, rendering this

exhibit fully alleviated.

CSP-03C: Inexplicable Ownable Pattern

Type Severity Location
Gas Optimization CollSurplusPool.sol:L41, L48
Description:

The [CARESRESARIERIIMN inherits the [OsEI ARVt lEI IRy | nplementation redundantly as it initializes it
within the [oIREIES SR LIS BEFINS LI EEEERY function and consequently renounces ownership in the same

call.

Example:

contracts/CollSurplusPool.so

SOL

function setAddresses (
5 _activePoolAddress,
s borrowerOperationsAddress,
_vesselManagerAddress,
5 vesselManagerOperationsAddress
cternal override initializer {
require (!isInitialized, "Already initializ

isInitialized = true;

__Ownable init();

activePoolAddress = activePoolAddress;
borrowerOperationsAddress = borrowerOperationsAddress;
vesselManagerAddress = vesselManagerAddress;

vesselManagerOperationsAddress = vesselManagerOperationsAddress;

renounceOwnership () ;

https://omniscia.io/reports/gravita-protocol-core-protocol-642b98414a1a960014621fc9/appendix/finding-types#gas-optimization
https://github.com/Gravita-Protocol/Gravita-SmartContracts/blob/bfa97cb37dc0e2927e75b36753585140f25a26dd/contracts/CollSurplusPool.sol#L32-L49

Recommendation:

We advise it to be removed, inheriting the implementation of OpenZeppelin instead which

is properly put in use within the contract.

Alleviation:

While the renunciation has been removed, the contract is still inherited by the

SIARERESIRIILIIN [0 properly alleviate this exhibit, we advise the [SRIEIIRNUIFILEYIRN coNntract to be
omitted from the [SAREIISARIILIIN ctirely.

CSP-04C: Redundant Initialization Paradigm

Type Severity Location
Gas Optimization CollSurplusPool.sol:L23, L37-L39
Description:

The [CARERESRRIER=IIMN contract inherits the OpenZeppelin [IBEIIRYIEILEIIRY i M plementation which
contains the implementation, put in use within the [EET T R Tt

function. As such, the manual flag is redundant.

Example:

contracts/CollSurplusPool.so

SOL

bool public isInitialized;

mapping (address => uint256) balances;

mapping (address => mapping (address => uint256)) internal userBalances;

function setAddresses (
s _activePoolAddress,
ss borrowerOperationsAddress,

_vesselManagerAddress,

s _vesselManagerOperationsAddress

xternal override initializer ({
require (!isInitialized, "Already initialized");

isInitialized = true;

https://omniscia.io/reports/gravita-protocol-core-protocol-642b98414a1a960014621fc9/appendix/finding-types#gas-optimization
https://github.com/Gravita-Protocol/Gravita-SmartContracts/blob/bfa97cb37dc0e2927e75b36753585140f25a26dd/contracts/CollSurplusPool.sol#L32-L49

Recommendation:

We advise it and its validations to be omitted from the codebase as it is ineffectual and duplicates the
purpose of the EEERSENEFLIIREREREREERERta M Odifier.

Alleviation:

The manual initialization methodology has been removed from the contract as advised.

DebtToken Code Style Findings

DTN-01C: Variable Mutability Specifier (Immutable)

Type Severity Location
Gas Optimization DebtToken.sol:L22
Description:

The linked variable is assigned to only once during the contract's (S NaaiaaSs

Example:

contracts/DebtToken.sol
SOL
constructor (

ss _vesselManagerAddress,

s stabilityPoolAddress,

s borrowerOperationsAddress,

__timelockAddress
) ERC20 ("GRAI", "GRAI") {
vesselManagerAddress = vesselManagerAddress;
timelockAddress = timelockAddress;
stabilityPool = IStabilityPool (stabilityPoolAddress) ;

borrowerOperationsAddress = borrowerOperationsAddress;

https://omniscia.io/reports/gravita-protocol-core-protocol-642b98414a1a960014621fc9/appendix/finding-types#gas-optimization

Recommendation:

We advise it to be set as greatly optimizing its read-access gas cost.

Alleviation:

The (BRI CEIa has been set as greatly optimizing its read-access gas cost.

DefaultPool Code Style Findings

DPL-01C: Inefficient Renunciation of Ownership

Type Severity Location
Gas Optimization DefaultPool.sol:L48
Description:

IIiE) DefaultPool: : setAddresses QNI RVIIRINI'ERISEEN OwnableUpgradeable: : renounceOwnership

function which in turn will apply the modifier redundantly.

Example:

contracts/DefaultPool.sol

SOL

function setAddresses(address vesselManagerAddress, address activePoolAddress)

external

initializer

require (!isInitialized, "Already initialized");

isInitialized = true;

__Ownable init();

vesselManagerAddress = vesselManagerAddress;

activePoolAddress = activePoolAddress;

renounceOwnership () ;

https://omniscia.io/reports/gravita-protocol-core-protocol-642b98414a1a960014621fc9/appendix/finding-types#gas-optimization
https://github.com/Gravita-Protocol/Gravita-SmartContracts/blob/bfa97cb37dc0e2927e75b36753585140f25a26dd/contracts/DefaultPool.sol#L36-L49

Recommendation:

We advise the (Il RRNueleFacts LT NR-TINIR VTSR SaeliettaXebhe] fLINCtiON tO be utilized directly, transferring

ownership to the zero address.

Alleviation:

Ownership of the contract is no longer renounced in the latest iteration of the codebase rendering this

exhibit inapplicable.

DPL-02C: Inefficient Lookups

Type Severity Location
Gas Optimization DefaultPool.sol:L73, L79, L88, L89, L97, L98
Description:

The linked statements perform key-based lookup operations on declarations from storage multiple

times for the same key redundantly.

Example:

contracts/DefaultPool.sol

SOL

assetsBalances|[asset] = assetsBalances[asset].sub(amount) ;

IERC20Upgradeable (_asset) .safeTransfer (activePool, safetyTransferAmount);

IDeposit (activePool) .receivedERC20 (_asset, amount);

emit DefaultPoolAssetBalanceUpdated(asset, assetsBalances[asset]);

https://omniscia.io/reports/gravita-protocol-core-protocol-642b98414a1a960014621fc9/appendix/finding-types#gas-optimization

Recommendation:

As the lookups internally perform an expensive operation, we advise the lookups to be cached

wherever possible to a single local declaration that either holds the value of the in case of primitive
types or holds a pointer to the contained.
Alleviation:

All inefficient lookups have been significantly optimized per our recommendation, rendering this

exhibit fully alleviated.

DPL-03C: Inexplicable Ownable Pattern

Type Severity Location
Gas Optimization DefaultPool.sol:L43, L48
Description:

The inherits the (T I implementation redundantly as it initializes it within
the PESTUIRAIIIRREINS CILEPSYEREY function and consequently renounces ownership in the same call.

Example:

contracts/DefaultPool.sol

SOL

function setAddresses (address vesselManagerAddress, address activePoolAddress)

external

initializer

require (!isInitialized, "Already initialized");

isInitialized = true;

__Ownable init();

vesselManagerAddress = vesselManagerAddress;

activePoolAddress = activePoolAddress;

renounceOwnership () ;

https://omniscia.io/reports/gravita-protocol-core-protocol-642b98414a1a960014621fc9/appendix/finding-types#gas-optimization
https://github.com/Gravita-Protocol/Gravita-SmartContracts/blob/bfa97cb37dc0e2927e75b36753585140f25a26dd/contracts/DefaultPool.sol#L36-L49

Recommendation:

We advise it to be removed, inheriting the implementation of OpenZeppelin instead which

is properly put in use within the contract.

Alleviation:

While the renunciation has been removed, the contract is still inherited by the

EETREEIEE. 1o properly alleviate this exhibit, we advise the (SR Ry contract to be omitted
from the entirely.

DPL-04C: Redundant Initialization Paradigm

Type Severity Location
Gas Optimization DefaultPool.sol:L29, L38, L40-L41
Description:

The contract inherits the OpenZeppelin (S NI T eI implementation which contains
the EREREENEREIIRY i plementation, put in use within the PEIEIRAIIIERETNS PR function. As such,
the manual flag is redundant.

Example:

contracts/DefaultPool.sol

SOL

bool public isInitialized;

mapping (address => uint256) internal assetsBalances;

mapping (addre > uint256) internal debtTokenBalances;

function setAddresses (address vesselManagerAddress, address activePoolAddress)

external

initializer

require (!isInitialized, "Already initialized");

isInitialized = true;

https://omniscia.io/reports/gravita-protocol-core-protocol-642b98414a1a960014621fc9/appendix/finding-types#gas-optimization
https://github.com/Gravita-Protocol/Gravita-SmartContracts/blob/bfa97cb37dc0e2927e75b36753585140f25a26dd/contracts/DefaultPool.sol#L36-L49

Recommendation:

We advise it and its validations to be omitted from the codebase as it is ineffectual and duplicates the
purpose of the EEERSENEFLIIREREREREERERta M Odifier.

Alleviation:

The manual initialization methodology has been removed from the contract as advised.

ERC20Decimals Code Style Findings

ERD-01C: Non-Standard Interface Name
Type Severity Location

Code Style ERC20Decimals.sol:L5

Description:

The referenced does not conform to the B84 naming convention.

Example:

contracts/Dependencies/ERC20Decimals.sol

SOL

interface ERC20Decimals {

https://omniscia.io/reports/gravita-protocol-core-protocol-642b98414a1a960014621fc9/appendix/finding-types#code-style

Recommendation:

We advise the interface and file to be aptly renamed to (NI Properly

illustrating its purpose.

Alleviation:

The interface and file have both been aptly renamed with an [prefixed, signalling that they are meant to

represent an rather than a implementation.

ERC20Permit Code Style Findings

ERC-01C: Inefficient Lookups

Type Severity Location
Gas Optimization ERC20Permit.sol:L96, L104
Description:

The linked statements perform key-based lookup operations on declarations from storage multiple

times for the same key redundantly.

Example:

contracts/Dependencies/ERC20Permit.so

SOL

bytes32 hashStruct = keccak256 (

abi.encode (PERMIT TYPEHASH, owner, spender, amount, nonces[owner].current (), dead

keccak256 (abi.encodePacked (uintl6 (0x1901), DOMAIN SEPARATOR, hashStrud

= ecrecover(hash, v, r, s);

require (signer != address(0) && signer == owner, "ERC20Permit: Invalid signature");

_nonces [owner] .increment () ;

https://omniscia.io/reports/gravita-protocol-core-protocol-642b98414a1a960014621fc9/appendix/finding-types#gas-optimization

Recommendation:

As the lookups internally perform an expensive operation, we advise the lookups to be cached

wherever possible to a single local declaration that either holds the value of the in case of primitive
types or holds a pointer to the contained.
Alleviation:

All inefficient lookups have been significantly optimized per our recommendation, rendering this

exhibit fully alleviated.

ERC-02C: Multiple Top-Level Declarations

Type Severity Location
Code Style ERC20Permit.sol:L7, L50
Description:

The referenced file contains multiple top-level declarations that decrease the legibility of the codebase.

Example:

contracts/Dependencies/ERC20Permit.sol

https://omniscia.io/reports/gravita-protocol-core-protocol-642b98414a1a960014621fc9/appendix/finding-types#code-style

interface IERC2612Permit {

function permit (
address owner,
address spender,
uint256 amount,
uint256 deadline,
uint8 v,
bytes32 r,
bytes32 s

) external;

function nonces (address owner) external view returns (uint256);

abstract contract ERC20Permit is ERC20, IERC2612Permit {

Recommendation:

We advise all highlighted top-level declarations to be split into their respective code files, avoiding
unnecessary imports as well as increasing the legibility of the codebase.

Alleviation:

The interface declaration has been relocated to its dedicated file and is now imported by

the codebase, optimizing the project's structure.

ERC-03C: Redundant Low-Level Assembly Blocks

Type Severity Location
Code Style @ nformational ERC20Permit.sol:L62-L65, L115-L119
Description:

The referenced block within the contract's yields the of the execution

context, however, the same value can be extracted without an block by accessing (IR R IR L
. Additionally, the pailebI)XS> ERRRFEERARL] fUNCtion is redundant as the value can be acquired via the same

syntax in other contexts.

Example:

contracts/Dependencies/ERC20Permit.so

SOL

uint256 chainID;
assembly {

chainID := chainid()

https://omniscia.io/reports/gravita-protocol-core-protocol-642b98414a1a960014621fc9/appendix/finding-types#code-style
https://github.com/Gravita-Protocol/Gravita-SmartContracts/blob/bfa97cb37dc0e2927e75b36753585140f25a26dd/contracts/Dependencies/ERC20Permit.sol#L115-L119

Recommendation:

We advise the syntax to be utilized, standardizing the codebase's style and rendering the

ERC20Permit: : chainId J{SIsleile]sRe=le[SlaleFla}M

Alleviation:

The ARSI MM EERER] Variable is now utilized in the fAleb)-rE 5 ERERET T3 2 attrtra as advised.

https://github.com/Gravita-Protocol/Gravita-SmartContracts/blob/bfa97cb37dc0e2927e75b36753585140f25a26dd/contracts/Dependencies/ERC20Permit.sol#L115-L119
https://github.com/Gravita-Protocol/Gravita-SmartContracts/blob/5e45123d169a126a3055945373421e1bda5515b9/contracts/Dependencies/ERC20Permit.sol#L61-L78

ERC-04C: Variable Mutability Specifier (Immutable)

Type Severity Location
Gas Optimization @ nformational ERC20Permit.sol:L59, L67
Description:

The linked variable is assigned to only once during the contract's (SIS aaaes

Example:

contracts/Dependencies/ERC20Permit.so

SOL

chainID := chainid/()

DOMAIN_SE PARATOR
abi.encode (

keccak256 (

"EIP712Domain (string name, string version,uint256 chainId,addr

)
keccak256 (bytes (name ())),
keccak256 (bytes ("1")),
chainID,

address (this)

https://omniscia.io/reports/gravita-protocol-core-protocol-642b98414a1a960014621fc9/appendix/finding-types#gas-optimization

Recommendation:

We advise it to be set as greatly optimizing its read-access gas cost.

Alleviation:

The BOENRIEEINIeH Variable has been set as [REIRAIORg Jreatly optimizing its read-access gas cost.

FeeCollector Code Style Findings

FCR-01C: Inefficient Lookups

Type Severity Location
Gas Optimization FeeCollector.sol:L182, L198, L207-L208
Description:

The linked statements perform key-based lookup operations on declarations from storage multiple

times for the same key redundantly.

Example:

contracts/FeeCollector.sol

https://omniscia.io/reports/gravita-protocol-core-protocol-642b98414a1a960014621fc9/appendix/finding-types#gas-optimization

function decreaseDebt (
address borrower,
address asset,
uint256 paybackFraction
) internal {
uint256 NOW = block.timestamp;
require (_paybackFraction <= 1 ether, "Payback fraction cannot be higher than 1 (@
require (paybackFraction > 0, "Payback fraction cannot be zero");
FeeRecord memory mRecord = feeRecords[borrower] [asset];

if (mRecord.amount == 0) {

return;

}
if (mRecord.to < NOW) {

_closeExpiredOrLiquidatedFeeRecord(borrower, asset, mRecord.amount) ;

} else {

uint256 expiredAmount = calcExpiredAmount (mRecord.from, mRecord.to, mRecord.d
_collectFee(borrower, asset, expiredAmount);

if (paybackFraction == 1lel8) {

uint256 refundAmount = mRecord.amount - expiredAmount;
_refundFee (_borrower, asset, refundAmount);
delete feeRecords[borrower] [asset];

emit FeeRecordUpdated(borrower, asset, NOW, 0, 0);

} else {

uint256 refundAmount = ((mRecord.amount - expiredAmount) * paybackFractid

_refundFee (_borrower, asset, refundAmount);
uint256 updatedAmount = mRecord.amount - expiredAmount - refundAmount;
feeRecords|[borrower] [asset].amount = updatedAmount;

feeRecords [borrower] [asset].from = NOW;

emit FeeRecordUpdated(borrower, asset, NOW, mRecord.to, updatedAmount);

Recommendation:

As the lookups internally perform an expensive operation, we advise the lookups to be cached

wherever possible to a single local declaration that either holds the value of the in case of primitive
types or holds a pointer to the contained.
Alleviation:

All inefficient lookups have been significantly optimized per our recommendation, rendering this

exhibit fully alleviated.

FCR-02C: Inexistent Error Messages

Type Severity Location
Code Style FeeCollector.sol:L50, L51
Description:

The linked checks have no error messages explicitly defined.

Example:

contracts/FeeCollector.sol

SOL

require (!isInitialized);

https://omniscia.io/reports/gravita-protocol-core-protocol-642b98414a1a960014621fc9/appendix/finding-types#code-style

Recommendation:

We advise each to be set so to increase the legibility of the codebase and aid in validating the
checks' conditions.

Alleviation:

While the first check is no longer present in the codebase, the second check has not had
an explicit error message introduced thereby rendering this exhibit unaddressed. Given that it pertains a

style-related exhibit, we will consider this exhibit acknowledged.

FCR-03C: Leftover Test Code

Type Severity Location

Gas Optimization FeeCollector.sol:L364-L388

Description:

The (NSRS T4 function is meant to be removed from the codebase as per its comment.

Example:

contracts/FeeCollector.sol

SOL

function f (uint256 value) internal pure returns (string memory) {
string memory sInput = Strings.toString(value);
bytes memory bInput = bytes (sInput) ;
uint256 len = bInput.length > 18 ? bInput.length + 1 : 20;
string memory sResult = new string(len);
bytes memory bResult = bytes (sResult)
if (bInput.length <= 18) ({
bResult[0] = "0";
bResult[1] = ".";
for (uint256 i = 1; i1 <= 18 - bInput.length; i++) bResult[i + 1] = "0";
for (uint256 i = bInput.length; i > 0; i--) bResult[--len] = bInput[i - 1];
} else {
uint256 c¢ = 0;
uint256 i = bInput.length;
while (i > 0) {
bResult[--1len] = bInput[--i];
if (++c == 18) DbResult[--len]

}

return string(bResult) ;

https://omniscia.io/reports/gravita-protocol-core-protocol-642b98414a1a960014621fc9/appendix/finding-types#gas-optimization
https://github.com/Gravita-Protocol/Gravita-SmartContracts/blob/bfa97cb37dc0e2927e75b36753585140f25a26dd/contracts/FeeCollector.sol#L368-L388

Recommendation:

We advise this to be done so, bringing the code closer to a production deployment.

Alleviation:

The leftover test code has been safely removed from the codebase as advised.

FCR-04C: Loop Iterator Optimization

Type Severity Location
Gas Optimization FeeCollector.sol:L142
Description:

The linked loop increments / decrements the iterator "safely" due to Solidity's built-in safe arithmetics

(post-EHERED)
Example:

contracts/FeeCollector.sol

SOL

for (uint256 i = 0; i < borrowersLength; ++i) {

https://omniscia.io/reports/gravita-protocol-core-protocol-642b98414a1a960014621fc9/appendix/finding-types#gas-optimization

Recommendation:

We advise the increment / decrement operation to be performed in an code block as the last
statement within the loop to optimize its execution cost.

Alleviation:

The loop iterator increment has been optimized as advised, however, its counterpart is utilized instead

of [l We advise the latter to be set in use as it is more optimal than the present code.

FCR-05C: Redundant Initialization Paradigm

Type Severity Location

Gas Optimization FeeCollector.sol:L49, L50, L62

Description:

The contract inherits the OpenZeppelin [T LI implementation which
contains the pREREEREEEVIRS i plementation, put in use within the Ja eIl BRI B RETN S EXNEEYS

function. As such, the manual flag is redundant.

Example:

contracts/FeeCollector.sol

SOL

function setAddresses (
address borrowerOperationsAddress,
address vesselManagerAddress,
address grvtStakingAddress,
address debtTokenAddress,
address treasuryAddress,
bool routeToGRVTStaking
) external initializer {
require (!isInitialized);
require (treasuryAddress != address(0));
borrowerOperationsAddress = borrowerOperationsAddress;
vesselManagerAddress = vesselManagerAddress;
grvtStaking = IGRVTStaking(grvtStakingAddress);
debtTokenAddress = debtTokenAddress;
treasuryAddress = treasuryAddress;
routeToGRVTStaking = routeToGRVTStaking;
if (routeToGRVTIStaking && address (grvtStaking) == address(0)) {
revert FeeCollector InvalidGRVTStakingAddress ()
}

_Ownable init();

isInitialized = true;

https://omniscia.io/reports/gravita-protocol-core-protocol-642b98414a1a960014621fc9/appendix/finding-types#gas-optimization
https://github.com/Gravita-Protocol/Gravita-SmartContracts/blob/bfa97cb37dc0e2927e75b36753585140f25a26dd/contracts/FeeCollector.sol#L42-L63

We advise it and its validations to be omitted from the codebase as it is ineffectual and duplicates the

purpose of the PEEREENEEEYIN-EREREREEREE2SS M Odifier.

Alleviation:

The manual initialization methodology has been removed from the contract as advised.

GravitaBase Code Style Findings

GBE-01C: Unused Function Declaration

Type Severity Location

Gas Optimization @ nformational GravitaBase.sol:L89-191
Description:
The function remains unutilized in the codebase.
Example:

contracts/Dependencies/GravitaBase.sol

SOL

function revertWrongFuncCaller () internal pure {

revert ("WEC") ;

https://omniscia.io/reports/gravita-protocol-core-protocol-642b98414a1a960014621fc9/appendix/finding-types#gas-optimization
https://github.com/Gravita-Protocol/Gravita-SmartContracts/blob/bfa97cb37dc0e2927e75b36753585140f25a26dd/contracts/Dependencies/GravitaBase.sol#L89-L91

Recommendation:

We advise it to be safely omitted, reducing the bytecode size of the contract.

Alleviation:

The unutilized [GXAEREV:-EEIEEEPRNEPIE 1t 331 b bIleEURERS function has been safely removed from the

codebase as advised.

https://github.com/Gravita-Protocol/Gravita-SmartContracts/blob/5e45123d169a126a3055945373421e1bda5515b9/contracts/Dependencies/GravitaBase.sol#L89-L91

GravitaMath Code Style Findings

GMH-01C: lllegible Representation of Value Literal

Type Severity Location

Code Style GravitaMath.sol:L101

Description:

The [EVEREVIETS SIS RIS A EREMRe] function will yield a value of PEEEEPEIEEEN rcpresenting the

maximum value of a variable, when an "infinite" collateral ratio is meant to be yielded by it.

Example:

contracts/Dependencies/GravitaMath.sol

https://omniscia.io/reports/gravita-protocol-core-protocol-642b98414a1a960014621fc9/appendix/finding-types#code-style
https://github.com/Gravita-Protocol/Gravita-SmartContracts/blob/bfa97cb37dc0e2927e75b36753585140f25a26dd/contracts/Dependencies/GravitaMath.sol#L94-L103

function computeNominalCR(uint256 coll, uint256 debt) internal pure returns (uint2§j

if (_debt > 0) {
return coll.mul (NICR PRECISION) .div (debt);

else {

return 2 ** 256 - 1;

function computeCR (
uint256 coll,
uint256 debt,
uint256 price
) internal pure returns (uint256) {
if (_debt > 0) {
uint256 newCollRatio = coll.mul(price) .div(debt);

return newCollRatio;

else {

return type (uint256)

Recommendation:

We advise the same syntax as [2EVEREVEL ERRI I BN t0 be used, yielding (R RER NI IWIERY 2N d

increasing the legibility of the codebase.

Alleviation:

The representation of the value literal has been standardized in the code utilizing as

advised.

https://github.com/Gravita-Protocol/Gravita-SmartContracts/blob/bfa97cb37dc0e2927e75b36753585140f25a26dd/contracts/Dependencies/GravitaMath.sol#L105-L120

GMH-02C: Repetitive Value Literal

Type Severity Location
Code Style GravitaMath.sol:L62, L63
Description:

The linked value literal is repeated across the codebase multiple times.

Example:

contracts/Dependencies/GravitaMath.sol

SOL

if (_minutes > 525600000) {

https://omniscia.io/reports/gravita-protocol-core-protocol-642b98414a1a960014621fc9/appendix/finding-types#code-style

Recommendation:

We advise it to be set to a variable instead optimizing the legibility of the codebase.

Alleviation:

The referenced repetitive value literal has been relocated to a (ERiianag variable declaration labelled
EERREREENS. optimizing the legibility of the codebase.

PoolBase Code Style Findings

PBE-01C: Significantly Inefficient Merging of Pending Gains /
Distributed Funds

Type Severity Location
Gas Optimization PoolBase.sol:L43-L68
Description:

The pRIIR-EEEERER RIS NISIREY function is meant to merge whatever pending gains are denoted in
and to the data entry, however, it does so significantly inefficiently. The same

inefficiency is observed in the fEIaN:-ERCHEEB PRSI I IREY function.

Example:

contracts/Dependencies/PoolBase.sol

https://omniscia.io/reports/gravita-protocol-core-protocol-642b98414a1a960014621fc9/appendix/finding-types#gas-optimization
https://github.com/Gravita-Protocol/Gravita-SmartContracts/blob/bfa97cb37dc0e2927e75b36753585140f25a26dd/contracts/Dependencies/PoolBase.sol#L33-L71
https://github.com/Gravita-Protocol/Gravita-SmartContracts/blob/bfa97cb37dc0e2927e75b36753585140f25a26dd/contracts/Dependencies/PoolBase.sol#L82-L120

function leftSumColls (
Colls memory colll,
address[] memory _tokens,
uint256[] memory amounts

) internal pure returns (uint256[] memory) {
if (_amounts.length == 0) {
return colll.amounts;
uint256 colllLen = colll.amounts.length;
uint256 tokensLen = tokens.length;
uint256[] memory sumAmounts = new uint256[] (colllLen) ;
uint256 1

uint256 7

while (i < tokensLen && j < colllLen) {

if (_tokens[i] == colll.tokens[]]) {

sumAmounts [J] _colll.amounts[]j].add(amounts[i]);

ARl g

else {
sumAmounts [J] _colll.amounts[]];

}
4 8

while (j < colllLen) {
sumAmounts[j] = colll.amounts[]];

A4 8

return sumAmounts;

Recommendation:

We advise the code to instead sum / subtract the values in the data entry directly,

rendering the new / array redundant. Additionally, this will significantly optimize

the code as only the array would need to be iterated as the data entry will be
"pre-filled" with the desirable amounts.

Alleviation:

The code, now located within [ElElIRERREage has been refactored per our recommendation albeit in a
different approach that is still relatively inefficient. We advise the array to be iterated rather than

the array, iterating the array inside the loop and issuing a statement

when the correct entry has been found to further optimize the code.

PBE-02C: Unused Error Declaration

Type Severity Location

Gas Optimization PoolBase.sol:L22
Description:
The error remains unused in the codebase.
Example:

contracts/Dependencies/PoolBase.sol

SOL

error PoolBase AdminOnly();

https://omniscia.io/reports/gravita-protocol-core-protocol-642b98414a1a960014621fc9/appendix/finding-types#gas-optimization

Recommendation:

We advise it to be safely omitted from it.

Alleviation:

The contract is no longer present in the codebase rendering this exhibit no longer applicable.

PriceFeed Code Style Findings

PFD-01C: Inexistent Error Message
Type Severity Location

Code Style PriceFeed.sol:L60

Description:

The linked check has no error message explicitly defined.

Example:

contracts/PriceFeed.sol

SOL

require (!isInitialized);

https://omniscia.io/reports/gravita-protocol-core-protocol-642b98414a1a960014621fc9/appendix/finding-types#code-style

Recommendation:

We advise one to be set so to increase the legibility of the codebase and aid in validating the
check's condition.

Alleviation:

The check is no longer present in the codebase rendering this exhibit no longer applicable.

PFD-02C: Redundant External Self-Calls

Type Severity Location
Gas Optimization PriceFeed.sol:L149, L171
Description:

The referenced statements perform external calls to self via the syntax redundantly.

Example:

contracts/PriceFeed.sol

SOL

function calcEthPrice(uint256 ethAmount) internal returns (uint256) {

uint256 ethPrice = this.fetchPrice (address (0));

return ethPrice.mul (ethAmount) .div (1 ether);

https://omniscia.io/reports/gravita-protocol-core-protocol-642b98414a1a960014621fc9/appendix/finding-types#gas-optimization

Recommendation:

We advise the (Bt Rt oI function to be set as and the calls to be made "internally"

by removing the call prefix.

Alleviation:

The second referenced instance is no longer present in the codebase whereas the first instance has been

properly corrected to perform an "internal” call rather than an "external" self-call.

https://github.com/Gravita-Protocol/Gravita-SmartContracts/blob/bfa97cb37dc0e2927e75b36753585140f25a26dd/contracts/PriceFeed.sol#L97-L133

PFD-03C: Redundant Function Implementation

Type Severity Location
Gas Optimization PriceFeed.sol:L183-L185
Description:

The referenced function yields a contract-level variable.

Example:

contracts/PriceFeed.sol

SOL

function getOracleUpdateTimelock() internal view virtual returns (uint

return ORACLE UPDATE TIMELOCK;

256)

https://omniscia.io/reports/gravita-protocol-core-protocol-642b98414a1a960014621fc9/appendix/finding-types#gas-optimization

Recommendation:

We advise it to be omitted and invocations of it to be replaced by the itself.

Alleviation:

The redundant function has been safely removed from the codebase as advised.

PFD-04C: Redundant Initialization Paradigm

Type Severity Location
Gas Optimization PriceFeed.sol:L33, L59-L61
Description:

The contract inherits the OpenZeppelin [N TEEI implementation which contains
the implementation, put in use within the (el T LTy function. As such,

the manual flag is redundant.
Example:

contracts/PriceFeed.sol

SOL

function setAddresses (
address _adminContract,
_rethToken,
5 _stethToken,
_wstethToken
rnal initializer {
require(!isInitialized) ;

isInitialized = true;

_Ownable init();

adminContract = adminContract;
rethToken = rethToken;
stethToken = stethToken;
wstethToken = wstethToken;

https://omniscia.io/reports/gravita-protocol-core-protocol-642b98414a1a960014621fc9/appendix/finding-types#gas-optimization
https://github.com/Gravita-Protocol/Gravita-SmartContracts/blob/bfa97cb37dc0e2927e75b36753585140f25a26dd/contracts/PriceFeed.sol#L54-L67

Recommendation:

We advise it and its validations to be omitted from the codebase as it is ineffectual and duplicates the
purpose of the EEERSENEFLIIREREREREERERta M Odifier.

Alleviation:

The manual initialization methodology has been removed from the contract as advised.

PFD-05C: Suboptimal Struct Declaration Styles

Type Severity Location
Code Style PriceFeed.sol:L80, L82
Description:

The linked declaration styles of the referenced structs are using index-based argument initialization.

Example:

contracts/PriceFeed.sol

SOL

queuedOracles[token] = OracleRecord(newOracle, timelockRelease, true, true, isEthInd

Recommendation:

We advise the key-value declaration format to be utilized instead in each instance, greatly increasing the

legibility of the codebase.

Alleviation:

The key-value declaration style is now in use in the code that both instances have been merged to,

alleviating this exhibit.

https://omniscia.io/reports/gravita-protocol-core-protocol-642b98414a1a960014621fc9/appendix/finding-types#code-style

ReentrancyGuardUpgradeable Code Style Findings

RGU-01C: Inefficient Reentrancy Guard Implementation

Type Severity Location
Gas Optimization ReentrancyGuardUpgradeable.sol:L40-L44, L48-L50
Description:

The BEEEHIRELIAZEIEIYslbjtesa X LEYIRY i M plementation present in the Gravita Protocol codebase represents an
outdated OpenZeppelin version modified to not use the dependency, however, it is

outdated and thus inefficient.

Example:

contracts/Dependencies/ReentrancyGuardUpgradeable.sol

SOL

modifier nonReentrant () {

require (status != ENTERED, "ReentrancyGuard: reentrant call");

_status = ENTERED;

_status = NOT ENTERED;

https://omniscia.io/reports/gravita-protocol-core-protocol-642b98414a1a960014621fc9/appendix/finding-types#gas-optimization

Recommendation:

We advise the internal function paradigm that the latest version of applies
in OpenZeppelin to be replicated here, significantly optimizing the gas cost of the

ReentrancyGuardUpgradeable: : nonReentrant [leleiilsI8

Alleviation:

The EESEREIeRE e tesa L IEYIRY contract has been removed from the codebase in favour of using the
actual BREI Tt el aclujolepa-telLYIRY Clcpendency of OpenZeppelin as a result of this exhibit. As such, we
consider this exhibit addressed.

https://github.com/OpenZeppelin/openzeppelin-contracts-upgradeable/blob/v4.8.2/contracts/security/ReentrancyGuardUpgradeable.sol
https://github.com/Gravita-Protocol/Gravita-SmartContracts/blob/bfa97cb37dc0e2927e75b36753585140f25a26dd/contracts/Dependencies/ReentrancyGuardUpgradeable.sol#L39-L51

SortedVessels Code Style Findings

SVS-01C: Inefficient Renunciation of Ownership

Type Severity Location
Gas Optimization SortedVessels.sol:L48
Description:

IIE] sortedvessels: : setParams QIVGileIaRVIIRIWTCRINEN OwvnableUpgradeable: : renounceOwnership

function which in turn will apply the modifier redundantly.

Example:

contracts/SortedVessels.sol

SOL

function setParams (address vesselManagerAddress, address borrowerOperationsAddress)

external
override

initializer

require (!isInitialized, "Already initialized");

isInitialized = true;

__Ownable init();

vesselManager = IVesselManager (_vesselManagerAddress) ;

borrowerOperationsAddress = borrowerOperationsAddress;

renounceOwnership () ;

https://omniscia.io/reports/gravita-protocol-core-protocol-642b98414a1a960014621fc9/appendix/finding-types#gas-optimization
https://github.com/Gravita-Protocol/Gravita-SmartContracts/blob/bfa97cb37dc0e2927e75b36753585140f25a26dd/contracts/SortedVessels.sol#L77-L91

Recommendation:

We advise the (Il RRNueleFacts LT NR-TINIR VTSR SaeliettaXebhe] fLINCtiON tO be utilized directly, transferring

ownership to the zero address.

Alleviation:

Ownership of the contract is no longer renounced in the latest iteration of the codebase rendering this

exhibit inapplicable.

SVS-02C: Inefficient Lookups

Type Severity Location

SortedVessels.sol:L143, L147-L148, L151-L153, L156-L158, L161-L164,
Gas Optimization L167, L184, L186, L189, L191, L195, L197, L201-L203, L205-L207, L212-
L213, L216-L217, L370, L376, L383-L384, L404, L410, L417-L418

Description:

The linked statements perform key-based lookup operations on declarations from storage multiple

times for the same key redundantly.

Example:

contracts/SortedVessels.sol

https://omniscia.io/reports/gravita-protocol-core-protocol-642b98414a1a960014621fc9/appendix/finding-types#gas-optimization

data[asset].nodes[id].exists = true;
if (prevId == address(0) && nextId == address (0)) {

data[asset].head id;

data[asset].tail = id;

} else if (prevId == address(0)) {

data[asset].nodes[id].nextId = data[asset].head;
data[asset].nodes[data[asset].head].prevlid = id;
data[asset].head = id;

} else if (nextId == address (0)) {

data[asset].nodes[id].prevId = data[asset].tail;
data[asset] .nodes[data[asset].tail].nextId = id;
data[asset].tail = id;

} else {

data[asset].nodes[id].nextId = nextId;

_1id] .prevId = prevId;
data[asset].nodes[prevId].nextId = id;

] [
data[asset].nodes|
] [
] [

data[asset] .nodes[nextId].prevIid id;

data[asset].size = data[asset].size.

Recommendation:

As the lookups internally perform an expensive operation, we advise the lookups to be cached

wherever possible to a single local declaration that either holds the value of the in case of primitive
types or holds a pointer to the contained.
Alleviation:

All inefficient lookups have been significantly optimized per our recommendation, rendering this

exhibit fully alleviated.

SVS-03C: Inexplicable Ownable Pattern

Type Severity Location
Gas Optimization SortedVessels.sol:L41, L48
Description:

The inherits the (TSR IL LIS implementation redundantly as it initializes it within
the ST VAEENERBFING-FEENE function and consequently renounces ownership in the same call.

Example:

contracts/SortedVessels.sol

SOL

function setParams (address vesselManagerAddress, address borrowerOperationsAddress)

external
override

initializer

require (!isInitialized, "Already initialized");

isInitialized = true;

__Ownable init();

vesselManager = IVesselManager (vesselManagerAddress) ;

borrowerOperationsAddress = borrowerOperationsAddress;

renounceOwnership () ;

https://omniscia.io/reports/gravita-protocol-core-protocol-642b98414a1a960014621fc9/appendix/finding-types#gas-optimization
https://github.com/Gravita-Protocol/Gravita-SmartContracts/blob/bfa97cb37dc0e2927e75b36753585140f25a26dd/contracts/SortedVessels.sol#L77-L91

Recommendation:

We advise it to be removed, inheriting the implementation of OpenZeppelin instead which

is properly put in use within the contract.

Alleviation:

While the renunciation has been removed, the contract is still inherited by the

EEERENEIEE). To properly alleviate this exhibit, we advise the (S IE IR Ry contract to be
omitted from the entirely.

SVS-04C: Redundant Initialization Paradigm

Type Severity Location
Gas Optimization SortedVessels.sol:L80, L82-L83
Description:

The contract inherits the OpenZeppelin [NI E I implementation which
contains the pRERRESEEEVIRN i plementation, put in use within the [HESTXVCEEINEREEINA-PEEWE] function.
As such, the manual flag is redundant.

Example:

contracts/SortedVessels.sol

unction setParams (address vesselManagerAddress, address borrowerOperationsAddress)

external
override

initializer

require(!isInitialized, "Already initialized");

isInitialized = true;

https://omniscia.io/reports/gravita-protocol-core-protocol-642b98414a1a960014621fc9/appendix/finding-types#gas-optimization
https://github.com/Gravita-Protocol/Gravita-SmartContracts/blob/bfa97cb37dc0e2927e75b36753585140f25a26dd/contracts/SortedVessels.sol#L77-L91

Recommendation:

We advise it and its validations to be omitted from the codebase as it is ineffectual and duplicates the
purpose of the EREREENEFLIIREREREREERERta M Odifier.

Alleviation:

The manual initialization methodology has been removed from the contract as advised.

StabilityPool Code Style Findings

SPL-01C: Inefficient Renunciation of Ownership

Type Severity Location

Gas Optimization StabilityPool.sol:L267

Description:

Ili[s) stabilityPool: : setAddresses RUNGUARUIRIIILERUEY OvwvnableUpgradeable:

function which in turn will apply the modifier redundantly.

:renounceOwnership

Example:

contracts/StabilityPool.sol

https://omniscia.io/reports/gravita-protocol-core-protocol-642b98414a1a960014621fc9/appendix/finding-types#gas-optimization
https://github.com/Gravita-Protocol/Gravita-SmartContracts/blob/bfa97cb37dc0e2927e75b36753585140f25a26dd/contracts/StabilityPool.sol#L242-L268

function setAddresses (
address borrowerOperationsAddress,
address vesselManagerAddress,
address _activePoolAddress,
address debtTokenAddress,
address sortedVesselsAddress,
address communityIssuanceAddress,
address _adminContractAddress

) external initializer override {

require (!isInitialized, "StabilityPool: Already initialized");

isInitialized = true;
__Ownable init();

__ReentrancyGuard init();

borrowerOperations = IBorrowerOperations (borrowerOperationsAddress) ;
vesselManager = IVesselManager (vesselManagerAddress) ;

activePool = IActivePool (activePoolAddress) ;

debtToken = IDebtToken (debtTokenAddress) ;

sortedVessels = ISortedVessels(sortedVesselsAddress) ;

communityIssuance = ICommunityIssuance (communityIssuanceAddress) ;

adminContract = IAdminContract (adminContractAddress) ;

= DECIMAL PRECISION;

renounceOwnership () ;

Recommendation:

We advise the (Il RRNueleFacts LT NR-TINIR VTSR SaeliettaXebhe] fLINCtiON tO be utilized directly, transferring

ownership to the zero address.

Alleviation:

Ownership of the contract is no longer renounced in the latest iteration of the codebase rendering this

exhibit inapplicable.

SPL-02C: Inefficient Lookups

Type Severity Location

StabilityPool.sol:L404, L405, L661, L662, L836, L838-L841, L852,

Gas Optimization L856-1859

Description:

The linked statements perform key-based lookup operations on declarations from storage multiple

times for the same key redundantly.

Example:

contracts/StabilityPool.sol

SOL

function updateG(uint256 GRVTIssuance) internal {

uint256 cachedTotalDebtTokenDeposits = totalDebtTokenDeposits;

if (cachedTotalDebtTokenDeposits == 0 || GRVTIssuance == 0) {

return;

256 GRVTPerUnitStaked = computeGRVIPerUnitStaked(GRVTIssuance, cachedTotalD4g
uint256 marginalGRVTGain = GRVTPerUnitStaked.mul (P) ;

epochToScaleToG[currentEpoch] [currentScale] = epochToScaleToG[currentEpoch] [curre

emit G Updated(epochToScaleToG[currentEpoch] [currentScale], currentEpoch, current§

https://omniscia.io/reports/gravita-protocol-core-protocol-642b98414a1a960014621fc9/appendix/finding-types#gas-optimization

Recommendation:

As the lookups internally perform an expensive operation, we advise the lookups to be cached

wherever possible to a single local declaration that either holds the value of the in case of primitive
types or holds a pointer to the contained.
Alleviation:

All but the first instance pair have been optimized per our recommendation, rendering this exhibit partially

alleviated.

SPL-03C: Inexplicable Contract Member

Type Severity Location
Gas Optimization StabilityPool.sol:L174, L615-L616, L806-L807
Description:

The FISSERICUARREEERES Nember of the EIEEISERERAM=IINN is Utilized in multiple statements within the code,

however, it results in a no-op as it remains filled with zero-values throughout its lifetime.

Example:

contracts/StabilityPool.sol

SOL

Colls memory tempPendingCollGains;

pendingCollGains[to] = tempPendingCollGains;

https://omniscia.io/reports/gravita-protocol-core-protocol-642b98414a1a960014621fc9/appendix/finding-types#gas-optimization

Recommendation:

We advise it to be re-evaluated and potentially omitted, significantly improving the gas costs of the
functions it was utilized in.

Alleviation:

The FISstSERIcAMREEERNEY coNntract member has been safely removed as advised.

SPL-04C: Inexplicable Ownable Pattern

Type Severity Location
Gas Optimization StabilityPool.sol:L254, L267
Description:

The EICISSRERARIIIN inherits the [IEIIRNSIEILEIRY i plementation redundantly as it initializes it within
the EIEVSRERAR I REEINS LEPEEEREY function and consequently renounces ownership in the same call.

Example:

contracts/StabilityPool.sol

https://omniscia.io/reports/gravita-protocol-core-protocol-642b98414a1a960014621fc9/appendix/finding-types#gas-optimization
https://github.com/Gravita-Protocol/Gravita-SmartContracts/blob/bfa97cb37dc0e2927e75b36753585140f25a26dd/contracts/StabilityPool.sol#L242-L268

function setAddresses (
address borrowerOperationsAddress,
address vesselManagerAddress,
address _activePoolAddress,
address debtTokenAddress,
address sortedVesselsAddress,
address communityIssuanceAddress,
address _adminContractAddress

) external initializer override {

require (!isInitialized, "StabilityPool: Already initialized");

isInitialized = true;
__Ownable init();

__ReentrancyGuard init();

borrowerOperations = IBorrowerOperations (borrowerOperationsAddress) ;
vesselManager = IVesselManager (vesselManagerAddress) ;

activePool = IActivePool (activePoolAddress) ;

debtToken = IDebtToken (debtTokenAddress) ;

sortedVessels = ISortedVessels(sortedVesselsAddress) ;

communityIssuance = ICommunityIssuance (communityIssuanceAddress) ;

adminContract = IAdminContract (adminContractAddress) ;

= DECIMAL PRECISION;

renounceOwnership () ;

Recommendation:

We advise it to be removed, inheriting the implementation of OpenZeppelin instead which
is properly put in use within the contract.

Alleviation:

The contract no longer utilizes or inherits the implementation, addressing this exhibit

in full.

SPL-05C: Loop Iterator Optimizations

Type Severity Location
Gas Optimization StabilityPool.sol:L635, L794, L835, L849, L896, L924, L934
Description:

The linked loops increment / decrement their iterator "safely” due to Solidity's built - in safe arithmetics

(post (RERED).

Example:

contracts/StabilityPool.sol

SOL

for (uint256 i1 = 0; 1 < assetslen; ++i) {

Recommendation:

We advise the increment / decrement operations to be performed in an code block as the last

statement within each loop to optimize their execution cost.

Alleviation:

The loop iterator increments have been optimized as advised where applicable, however, their
counterpart is utilized instead of 8 We advise the latter to be set in use as it is more optimal than the

present code.

https://omniscia.io/reports/gravita-protocol-core-protocol-642b98414a1a960014621fc9/appendix/finding-types#gas-optimization

SPL-06C: Redundant Initialization Paradigm

Type Severity Location
Gas Optimization StabilityPool.sol:L250-L251, L253
Description:

The EIEISSRERARIIIN contract inherits the OpenZeppelin [JUEIIRNUIFLY LIRS implementation which
contains the implementation, put in use within the (o SRR 2 T .

function. As such, the manual flag is redundant.

Example:

contracts/StabilityPool.sol

https://omniscia.io/reports/gravita-protocol-core-protocol-642b98414a1a960014621fc9/appendix/finding-types#gas-optimization
https://github.com/Gravita-Protocol/Gravita-SmartContracts/blob/bfa97cb37dc0e2927e75b36753585140f25a26dd/contracts/StabilityPool.sol#L242-L268

function setAddresses (
address borrowerOperationsAddress,
address vesselManagerAddress,
address _activePoolAddress,
address debtTokenAddress,
address sortedVesselsAddress,
address communityIssuanceAddress,
address _adminContractAddress

) external initializer override {

require (!isInitialized, "StabilityPool: Already initialized");

isInitialized = true;
__Ownable init();

__ReentrancyGuard init();

borrowerOperations = IBorrowerOperations (borrowerOperationsAddress) ;
vesselManager = IVesselManager (vesselManagerAddress) ;

activePool = IActivePool (activePoolAddress) ;

debtToken = IDebtToken (debtTokenAddress) ;

sortedVessels = ISortedVessels(sortedVesselsAddress) ;
communityIssuance = ICommunityIssuance (communityIssuanceAddress) ;

adminContract = IAdminContract (adminContractAddress) ;

= DECIMAL PRECISION;

renounceOwnership () ;

Recommendation:

We advise it and its validations to be omitted from the codebase as it is ineffectual and duplicates the

purpose of the RN R ENERLIAPREREREERERASa M Odificr.

Alleviation:

The manual initialization methodology has been removed from the contract as advised.

SPL-07C: Suboptimal Struct Declaration Style

Type Severity Location
Code Style StabilityPool.sol:L614
Description:

The linked declaration style of a struct is using index-based argument initialization.

Example:

contracts/StabilityPool.sol

SOL

Colls(collateralsFromNewGains, amountsFromNewGains),

Recommendation:

We advise the key-value declaration format to be utilized instead, greatly increasing the legibility of the

codebase.

Alleviation:

The referenced declaration of a is no longer present in the codebase, rendering this exhibit no

longer applicable.

https://omniscia.io/reports/gravita-protocol-core-protocol-642b98414a1a960014621fc9/appendix/finding-types#code-style

Timelock Code Style Findings

TKC-01C: Inefficient Application of Access Control

Type Severity Location
Code Style Timelock.sol:L113-L115
Description:

The referenced statements replicate the behaviour of the modifier.

Example:

contracts/Timelock.sol

SOL

function queueTransaction (
address target,
uint value,
string memory signature,
bytes memory data,
uint eta

) public returns (bytes32) {

if (msg.sender != admin) {

revert Timelock AdminOnly();

https://omniscia.io/reports/gravita-protocol-core-protocol-642b98414a1a960014621fc9/appendix/finding-types#code-style
https://github.com/Gravita-Protocol/Gravita-SmartContracts/blob/bfa97cb37dc0e2927e75b36753585140f25a26dd/contracts/Timelock.sol#L64-L69

Recommendation:

We advise the to be utilized by the fIE SR TRE T rrrard function and the manual

access control statements to be omitted.

Alleviation:

The modifier is utilized in place of the manual check in the

Timelock: : queueTransaction [ENEINN:eH

https://github.com/Gravita-Protocol/Gravita-SmartContracts/blob/bfa97cb37dc0e2927e75b36753585140f25a26dd/contracts/Timelock.sol#L106-L125
https://github.com/Gravita-Protocol/Gravita-SmartContracts/blob/5e45123d169a126a3055945373421e1bda5515b9/contracts/Timelock.sol#L64-L69
https://github.com/Gravita-Protocol/Gravita-SmartContracts/blob/5e45123d169a126a3055945373421e1bda5515b9/contracts/Timelock.sol#L106-L125

TKC-02C: Redundant Function Implementation

Type Severity Location
Gas Optimization Timelock.sol:L179-L181
Description:

The EERiIRYe) FRE NS IRY S ER LN WY function implementation is redundant as it yields a statement literal (
block.timestamp |}

Example:

contracts/Timelock.sol

SOL

function getBlockTimestamp () internal view returns (uint) {

return block.timestamp;

https://omniscia.io/reports/gravita-protocol-core-protocol-642b98414a1a960014621fc9/appendix/finding-types#gas-optimization
https://github.com/Gravita-Protocol/Gravita-SmartContracts/blob/bfa97cb37dc0e2927e75b36753585140f25a26dd/contracts/Timelock.sol#L179-L181

Recommendation:
We advise all its invocations to be replaced by the statement directly, optimizing their gas

cost.

Alleviation:

The redundant function has been safely omitted from the codebase as

advised.

https://github.com/Gravita-Protocol/Gravita-SmartContracts/blob/5e45123d169a126a3055945373421e1bda5515b9/contracts/Timelock.sol#L179-L181

VesselManager Code Style Findings

VMR-01C: Inefficient Lookups

Type Severity Location

VesselManager.sol:L227-L228, L281-L283, L417-L418, L420, L422, L426-
L427, L429, L504-L505, L522-L523, L533-L535, L541-L542, L547-L549,
L554-L556, L558-L559, L594-L596, L598-L599, L610, L613, L619, L621-
L622, L625, L692-L693, L701-L702, L711-L712, L721-L722, L731, L737

Gas Optimization

Description:

The linked statements perform key-based lookup operations on declarations from storage multiple

times for the same key redundantly.

Example:

contracts/VesselManager.sol

SOL

function getCurrentVesselAmounts (address asset, address borrower) internal view re

uint256 pendingCollReward = getPendingAssetReward(asset, borrower);

uint256 pendingDebtReward = getPendingDebtTokenReward(asset, borrower);

uint256 currentAsset = Vessels[borrower] [asset].coll.add(pendingCollReward);

uint256 currentDebt = Vessels|[borrower] [asset].debt.add(pendingDebtReward) ;

return (currentAsset, currentDebt) ;

https://omniscia.io/reports/gravita-protocol-core-protocol-642b98414a1a960014621fc9/appendix/finding-types#gas-optimization

Recommendation:

As the lookups internally perform an expensive operation, we advise the lookups to be cached

wherever possible to a single local declaration that either holds the value of the in case of primitive
types or holds a pointer to the contained.
Alleviation:

All inefficient lookups have been significantly optimized per our recommendation, rendering this

exhibit fully alleviated.

VMR-02C: Redundant Data Point

Type Severity Location
Gas Optimization VesselManager.sol:L692
Description:

The type data point present in each struct is redundant as the requires the
key to be accessed.

Example:

contracts/VesselManager.sol

SOL

function setVesselStatus (
address asset,
address borrower,

’56 num

uint
>xternal override onlyBorrowerOperations ({

Vessels[borrower] [asset].asset = asset;

Vessels[borrower] [asset].status = Status(num);

https://omniscia.io/reports/gravita-protocol-core-protocol-642b98414a1a960014621fc9/appendix/finding-types#gas-optimization

Recommendation:

We advise the data point to be safely omitted as it is not utilized within the contract.

Alleviation:

The data point has been safely removed from the data entry.

VMR-03C: Redundant External Self-Call

Type Severity Location
Gas Optimization VesselManager.sol:L238
Description:

The referenced statement performs an external call to self via the [SEERReISaAUCEEIMRILERtE] S\/Ntax
redundantly.

Example:

contracts/VesselManager.sol

SOL

function isVesselActive (address asset, s borrower) public view override returr

return this.getVesselStatus(asset, borrower) == uint256 (Status.active);

https://omniscia.io/reports/gravita-protocol-core-protocol-642b98414a1a960014621fc9/appendix/finding-types#gas-optimization

Recommendation:

We advise the R TSN N R RTINS function to be set as and the call to be made

"internally" by removing the call prefix.

Alleviation:

The redundant self-call has been replaced by an "internal" call of its function as advised.

https://github.com/Gravita-Protocol/Gravita-SmartContracts/blob/bfa97cb37dc0e2927e75b36753585140f25a26dd/contracts/VesselManager.sol#L661-L663

VMR-04C: Redundant Initialization Paradigm

Type Severity Location

Gas Optimization VesselManager.sol:L134-L136

Description:

The contract inherits the OpenZeppelin [NI T eI implementation which
contains the pREREEREEEVIRN i plementation, put in use within the REEEEIIIE EY: EYREETN S Yole XYy

function. As such, the manual flag is redundant.

Example:

contracts/VesselManager.sol

SOL

function setAddresses (
address borrowerOperationsAddress,
address stabilityPoolAddress,
address gasPoolAddress,
address collSurplusPoolAddress,
address debtTokenAddress,
address feeCollectorAddress,
address sortedVesselsAddress,
address vesselManagerOperationsAddress,
address adminContractAddress
) external override initializer {
require (!isInitialized, "Already initialized"):;
isInitialized = true;
__Ownable init();
borrowerOperations = borrowerOperationsAddress;
stabilityPool = IStabilityPool(stabilityPoolAddress) :;
gasPoolAddress = gasPoolAddress;
collSurplusPool = ICollSurplusPool (collSurplusPoolAddress);
debtToken = IDebtToken (debtTokenAddress) ;

feeCollector = IFeeCollector(feeCollectorAddress);
sortedVessels = ISortedVessels(sortedVesselsAddress) ;
vesselManagerOperations = IVesselManagerOperations (vesselManagerOperationsAddresd

adminContract = IAdminContract (adminContractAddress) ;

https://omniscia.io/reports/gravita-protocol-core-protocol-642b98414a1a960014621fc9/appendix/finding-types#gas-optimization
https://github.com/Gravita-Protocol/Gravita-SmartContracts/blob/bfa97cb37dc0e2927e75b36753585140f25a26dd/contracts/VesselManager.sol#L124-L147

Recommendation:

We advise it and its validations to be omitted from the codebase as it is ineffectual and duplicates the
purpose of the EEERSENEFLIIREREREREERERta M Odifier.

Alleviation:

The manual initialization methodology has been removed from the contract as advised.

VesselManagerOperations Code Style Findings

VMO-01C: Loop Iterator Optimizations

Type Severity Location

Gas Optimization VesselManagerOperations.sol:L485, L548, L594, L782

Description:

The linked loops increment / decrement their iterator "safely” due to Solidity's built - in safe arithmetics

(post- D)
Example:

contracts/VesselManagerOperations.sol

SOL

for (vars.i = 0; vars.i < vesselArray.length; vars.i++) {

https://omniscia.io/reports/gravita-protocol-core-protocol-642b98414a1a960014621fc9/appendix/finding-types#gas-optimization

Recommendation:

We advise the increment / decrement operations to be performed in an code block as the last

statement within each loop to optimize their execution cost.

Alleviation:

The loop iterator increments have been optimized as advised where applicable, however, their
counterpart is utilized instead of . We advise the latter to be set in use as it is more optimal than the

present code.

VMO-02C: Redundant Initialization Paradigm

Type Severity Location
Gas Optimization VesselManagerOperations.sol:L66-L67, L75
Description:

The NCEERANERELT Ao INEtRRIN] contract inherits the OpenZeppelin [OIIEIIRNNSIEILEIRY i plementation

which contains the implementation, put in use within the

VesselManagerOperations: : setAddresses function. As such, the manual FRERSEREENEEAN! ﬂagis

redundant.

Example:

contracts/VesselManagerOperations.sol

SOL

function setAddresses (
address vesselManagerAddress,
ddress sortedVesselsAddress,
address stabilityPoolAddress,
5 collSurplusPoolAddress,
s _debtTokenAddress,
_adminContractAddress
rnal initializer {
require(!isInitialized, "Already initialized"):;
___Ownable init();
vesselManager = IVesselManager (vesselManagerAddress) ;
sortedVessels ISortedVessels (sortedVesselsAddress) ;
stabilityPool IStabilityPool (_stabilityPoolAddress) ;
collSurplusPool = ICollSurplusPool (collSurplusPoolAddress) ;
debtToken = IDebtToken (debtTokenAddress) ;

adminContract = IAdminContract (adminContractAddress) ;

isInitialized true;

https://omniscia.io/reports/gravita-protocol-core-protocol-642b98414a1a960014621fc9/appendix/finding-types#gas-optimization
https://github.com/Gravita-Protocol/Gravita-SmartContracts/blob/bfa97cb37dc0e2927e75b36753585140f25a26dd/contracts/VesselManagerOperations.sol#L59-L76

Recommendation:

We advise it and its validations to be omitted from the codebase as it is ineffectual and duplicates the
purpose of the EEERSENEFLIIREREREREERERta M Odifier.

Alleviation:

The manual initialization methodology has been removed from the contract as advised.

VMO-03C: Suboptimal Struct Declaration Styles

Type Severity Location
Code Style @ nformational VesselManagerOperations.sol:L97-L101, L347, L770
Description:

The linked declaration styles of the referenced structs are using index-based argument initialization.

Example:

contracts/VesselManagerOperations.sol

SOL

LiquidationContractsCache memory contractsCache = LiquidationContractsCache (

adminContract.activePool (),
adminContract.defaultPool (),

sortedVessels

https://omniscia.io/reports/gravita-protocol-core-protocol-642b98414a1a960014621fc9/appendix/finding-types#code-style

Recommendation:

We advise the key-value declaration format to be utilized instead in each instance, greatly increasing the
legibility of the codebase.

Alleviation:

The key-value declaration style is now in use in all referenced instances of the exhibit, addressing it in full.

Finding Types

A description of each finding type included in the report can be found below and is linked by each
respective finding. A full list of finding types Omniscia has defined will be viewable at the central audit

methodology we will publish soon.

External Call Validation

Many contracts that interact with DeFi contain a set of complex external call executions that need to happen
in a particular sequence and whose execution is usually taken for granted whereby it is not always the case.
External calls should always be validated, either in the form of checks imposed at the contract-level
or via more intricate mechanisms such as invoking an external getter-variable and ensuring that it has been

properly updated.

Input Sanitization

As there are no inherent guarantees to the inputs a function accepts, a set of guards should always be in

place to sanitize the values passed in to a particular function.

Indeterminate Code

These types of issues arise when a linked code segment may not behave as expected, either due to mistyped

code, convoluted blocks, overlapping functions / variable names and other ambiguous statements.

Language Specific

Language specific issues arise from certain peculiarities that the Solidity language boasts that discerns it
from other conventional programming languages. For example, the EVM is a 256-bit machine meaning that
operations on less-than-256-bit types are more costly for the EVM in terms of gas costs, meaning that loops

utilizing a variable because their limit will never exceed the 8-bit range actually cost more than
redundantly using a variable.

Code Style

An official Solidity style guide exists that is constantly under development and is adjusted on each new
Solidity release, designating how the overall look and feel of a codebase should be. In these types of
findings, we identify whether a project conforms to a particular naming convention and whether that
convention is consistent within the codebase and legible. In case of inconsistencies, we point them out under

this category. Additionally, variable shadowing falls under this category as well which is identified when a

local-level variable contains the same name as a contract-level variable that is present in the inheritance

chain of the local execution level's context.

Gas Optimization

Gas optimization findings relate to ways the codebase can be optimized to reduce the gas cost involved with
interacting with it to various degrees. These types of findings are completely optional and are pointed out

for the benefit of the project's developers.

Standard Conformity

These types of findings relate to incompatibility between a particular standard's implementation and the

project's implementation, oftentimes causing significant issues in the usability of the contracts.

Mathematical Operations

In Solidity, math generally behaves differently than other programming languages due to the constraints of
the EVM. A prime example of this difference is the truncation of values during a division which in turn leads
to loss of precision and can cause systems to behave incorrectly when dealing with percentages and

proportion calculations.

Logical Fault

This category is a bit broad and is meant to cover implementations that contain flaws in the way they are
implemented, either due to unimplemented functionality, unaccounted-for edge cases or similar

extraordinary scenarios.

Centralization Concern

This category covers all findings that relate to a significant degree of centralization present in the project and
as such the potential of a Single-Point-of-Failure (SPoF) for the project that we urge them to re-consider and

potentially omit.

Reentrant Call

This category relates to findings that arise from re-entrant external calls (such as EIP-721 minting operations)
and revolve around the inapplicacy of the Checks-Effects-Interactions (CEl) pattern, a pattern that dictates
checks statements etc.) should occur before effects (local storage updates) and interactions

(external calls) should be performed last.

Disclaimer

The following disclaimer applies to all versions of the audit report produced (preliminary / public / private)

and is in effect for all past, current, and future audit reports that are produced and hosted under Omniscia:

IMPORTANT TERMS & CONDITIONS REGARDING OUR SECURITY
AUDITS/REVIEWS/REPORTS AND ALL PUBLIC/PRIVATE
CONTENT/DELIVERABLES

Omniscia ("Omniscia") has conducted an independent security review to verify the integrity of and highlight
any vulnerabilities, bugs or errors, intentional or unintentional, that may be present in the codebase that

were provided for the scope of this Engagement.

Blockchain technology and the cryptographic assets it supports are nascent technologies. This makes them
extremely volatile assets. Any assessment report obtained on such volatile and nascent assets may include

unpredictable results which may lead to positive or negative outcomes.

In some cases, services provided may be reliant on a variety of third parties. This security review does not
constitute endorsement, agreement or acceptance for the Project and technology that was reviewed. Users
relying on this security review should not consider this as having any merit for financial advice or

technological due diligence in any shape, form or nature.

The veracity and accuracy of the findings presented in this report relate solely to the proficiency,
competence, aptitude and discretion of our auditors. Omniscia and its employees make no guarantees, nor
assurance that the contracts are free of exploits, bugs, vulnerabilities, deprecation of technologies or any

system / economical / mathematical malfunction.

This audit report shall not be printed, saved, disclosed nor transmitted to any persons or parties on any

objective, goal or justification without due written assent, acquiescence or approval by Omniscia.

All the information/opinions/suggestions provided in this report does not constitute financial or investment
advice, nor should it be used to signal that any person reading this report should invest their funds without

sufficient individual due diligence regardless of the findings presented in this report.

Information in this report is provided 'as is'. Omniscia is under no covenant to the completeness, accuracy or
solidity of the contracts reviewed. Omniscia's goal is to help reduce the attack vectors/surface and the high

level of variance associated with utilizing new and consistently changing technologies.

Omniscia in no way claims any guarantee, warranty or assurance of security or functionality of the

technology that was in scope for this security review.

In no event will Omniscia, its partners, employees, agents or any parties related to the design/creation of this
security review be ever liable to any parties for, or lack thereof, decisions and/or actions with regards to the

information provided in this security review.

Cryptocurrencies and all other technologies directly or indirectly related to cryptocurrencies are not
standardized, highly prone to malfunction and extremely speculative by nature. No due diligence and/or
safeguards may be insufficient and users should exercise maximum caution when participating and/or

investing in this nascent industry.

The preparation of this security review has made all reasonable attempts to provide clear and actionable
recommendations to the Project team (the “client”) with respect to the rectification, amendment and/or
revision of any highlighted issues, vulnerabilities or exploits within the contracts in scope for this

engagement.

It is the sole responsibility of the Project team to provide adequate levels of test and perform the necessary
checks to ensure that the contracts are functioning as intended, and more specifically to ensure that the
functions contained within the contracts in scope have the desired intended effects, functionalities and

outcomes, as documented by the Project team.

All services, the security reports, discussions, work product, attack vectors description or any other materials,
products or results of this security review engagement is provided "as is" and "as available" and with all

faults, uncertainty and defects without warranty or guarantee of any kind.

Omniscia will assume no liability or responsibility for delays, errors, mistakes, or any inaccuracies of content,
suggestions, materials or for any loss, delay, damage of any kind which arose as a result of this

engagement/security review.

Omniscia will assume no liability or responsibility for any personal injury, property damage, of any kind
whatsoever that resulted in this engagement and the customer having access to or use of the products,

engineers, services, security report, or any other other materials.

For avoidance of doubt, this report, its content, access, and/or usage thereof, including any associated
services or materials, shall not be considered or relied upon as any form of financial, investment, tax, legal,

regulatory, or any other type of advice.

