
DEDAUB.COM

Gravita Protocol

Security Assessment

Apr 3, 2023

DEDAUB.COM

ABSTRACT
Dedaub was commissioned to perform a security audit of the Gravita protocol, an
adaptation of the Liquity codebase to a multi-collateral system. Gravita follows the
example of other Liquity-inspired codebases, such as Vesta and Yeti, but introduces its
own design choices. Importantly, the protocol:

● allowsmultiple kinds of collateral (“assets”);
● strictly segregates the different collateral kinds, with respect to

liquidation/redemption behavior. Borrowing positions (“vessels”) are strictly
associated with one asset, and the financials of any one asset should not affect in
any way the others.

The audit was performed at commit hash bfa97cb37dc0e2927e75b36753585140f25a26dd

of the gravita-SmartContracts repository. Updates were inspected based on commit
deltas, as listed, considering only whether the change addresses the issue at hand, and
not in terms of considering the overall codebase.

SETTING & CAVEATS

An audit team of two auditors worked on the codebase for 2 working weeks.

The audit scope was defined in coordination with the client and consists of the following
files:

AdminContract.sol
BorrowerOperations.sol
DebtToken.sol
FeeCollector.sol
PriceFeed.sol
StabilityPool.sol
VesselManager.sol
VesselManagerOperations.sol

1

https://github.com/Gravita-Protocol/Gravita-SmartContracts

DEDAUB.COM

Other files in the codebase are considered trusted, although we consulted some of them
during the audit, e.g., to inspect token transfers in ActivePool.sol, specifically in regards
to reentrancy threats.

The above in-scope files comprise around 4885 lines of code. This size extends well
beyond what can be audited from scratch in the allotted time. However, the audit was
conducted as a delta audit, assuming that the original Liquity codebase is well-trusted.
We, therefore, audited the changes relative to the Liquity repository, commit hash
26ff1ce48b00d7632c459a9176574133b955b7be, dated July 20, 2022, i.e., the stable Liquity
version around the time of origination of the Gravita project codebase.

Given that the Liquity codebase is well-trusted, the delta audit approach allowed us to
get high confidence in a muchmore realistic timeframe. However, it comes with caveats,
even beyond the correctness of the Liquity code itself. Notably, there is a need to
maintain the Liquity invariants throughout, including in files outside the audit scope.
(E.g., a single quantity with the wrong number of decimals can violate correctness.) In
our audit, we found the code to reflect a good understanding of Liquity, so we have
reasonable confidence that Liquity invariants are preserved.

The audit’s main target is security threats, i.e., what the community understanding
would likely call "hacking", rather than the regular use of the protocol. Although a
high-level specification describing interactions within the protocol was provided,
functional correctness (i.e. issues in "regular use") was a secondary consideration.
Functional correctness relative to low-level calculations (including units, scaling and
quantities returned from external protocols) is generally most effectively done through
thorough testing rather than human auditing.

PROTOCOL-LEVEL CONSIDERATIONS

There are several important protocol-level considerations that the development team
should be well aware of.

2

https://github.com/liquity/

DEDAUB.COM

● There is a REDEMPTION_SOFTENING_PARAM set to 97%. This has the effect that
third-party (not the vessel’s owner) redeemers only receive 97% of the collateral.
As a result, the GRAI token will likely not be well-pegged to the USD, but more
lower.

● Unlike in Liquity, the baseRate quantity is used to adjust the fees only for
redemptions and NOT for borrowing. (In Liquity, if there are recent redemptions,
there are higher fees both for redemptions and for borrowing:
https://github.com/liquity/dev#intuition-behind-fees)

In Gravita, the baseRate is per-asset, and, thus, only affects redemptions. The cost
of borrowing is entirely unaffected by whether there have been recent
redemptions: the formula for borrowing fees just includes the static per-asset fee,
not the dynamically-changing baseRate.

This is a fine design choice, but it is clearly a matter of financial protocol design.
● The Gravita fees calculation permits limited economic gaming. For instance,

fee-wise it may be preferable for a client to open a new debt position instead of
increasing his/her old one, just because of the fee refund curve, which remains
linear.

VULNERABILITIES & FUNCTIONAL ISSUES

This section details issues affecting the functionality of the contract. Dedaub generally
categorizes issues according to the following severities, but may also take other
considerations into account such as impact or difficulty in exploitation:

Category Description

CRITICAL
Can be profitably exploited by any knowledgeable third-party attacker
to drain a portion of the system’s or users’ funds OR the contract does

3

https://github.com/liquity/dev#intuition-behind-fees

DEDAUB.COM

not function as intended and severe loss of funds may result.

HIGH
Third-party attackers or faulty functionality may block the system or
cause the system or users to lose funds. Important system invariants
can be violated.

MEDIUM

Examples:
● User or system funds can be lost when third-party systems
misbehave.

● DoS, under specific conditions.
● Part of the functionality becomes unusable due to a programming
error.

LOW

Examples:
● Breaking system invariants but without apparent consequences.
● Buggy functionality for trusted users where a workaround exists.
● Security issues whichmaymanifest when the system evolves.

Issue resolution includes “dismissed” or “acknowledged” but no action taken, by the
client, or “resolved”, per the auditors.

CRITICAL SEVERITY:
[No critical severity issues]

HIGH SEVERITY:
[No high severity issues]

MEDIUM SEVERITY:
ID Description STATUS

4

DEDAUB.COM

M1 Reentrancy considerations
ACKNOWLEDGED
+ RESOLVED
(d8bce016)

There are some reentrancy considerations throughout the codebase. The code has
apparently not been developed with reentrancy in mind (i.e., with no consideration that
transferring tokens may yield control to an untrusted party). It is not wise to rely on a
security audit to find all possible sources of reentrancy, if developers have not first
thought deeply about them. Therefore, we recommend the use of the protocol only
with tokens that do not have callbacks to untrusted parties, to completely mitigate all
reentrancy concerns.

However, we list below what we believe are all the reentrancy threats, viewed
conservatively. Our suggestions aim to bring the codebase to the same levels of
reentrancy safety as the Liquity codebase.

● The protocol should not be used with collateral tokens that perform callbacks to
the sender of tokens. E.g., ERC 777 tokens have this behavior and they are
well-known as reentrancy death traps. Since these tokens are very rare, this is
not a true limitation.

The specific threat with such tokens is that the internal function
BorrowerOperations::_activePoolAddColl (which does a transferFrom from an
untrusted party) is used in the middle of code that has complex effects after the
function call. Viewed differently, such tokens are very different from ETH in
callback behavior, and since the Liquity codebase of origin has been written and
tested with ETH in mind, such unintuitive callbacks can yield major violations of
the checks-effects-interactions pattern.
function _activePoolAddColl(

address _asset,
IActivePool _activePool,
uint256 _amount

) internal {
IERC20Upgradeable(_asset).safeTransferFrom(

5

https://media.dedaub.com/latent-bugs-in-billion-plus-dollar-code-c2e67a25b689

DEDAUB.COM

msg.sender,
address(_activePool),
SafetyTransfer.decimalsCorrection(_asset, _amount)

);
_activePool.receivedERC20(_asset, _amount);

}

// called in:

function openVessel(
address _asset,
uint256 _assetAmount,
uint256 _debtTokenAmount,
address _upperHint,
address _lowerHint

) external override {
…
_activePoolAddColl(vars.asset, contractsCache.activePool, _assetAmount);
_withdrawDebtTokens(

vars.asset,
contractsCache.activePool,
contractsCache.debtToken,
msg.sender,
_debtTokenAmount,
vars.netDebt

);
// Move the debtToken gas compensation to the Gas Pool
_withdrawDebtTokens(

vars.asset,
contractsCache.activePool,
contractsCache.debtToken,
gasPoolAddress,
adminContract.getDebtTokenGasCompensation(vars.asset),
adminContract.getDebtTokenGasCompensation(vars.asset)

);
…

}

● Compared to Liquity, there are places in the code where effects take place after
external interactions, i.e., after sending tokens to an untrusted recipient. We

6

DEDAUB.COM

recommend reordering rather than trying to reason that all these interactions
are reentrancy-safe.

- In BorrowerOperations::closeVessel:
// Send the collateral back to the user
activePoolCached.sendAsset(_asset, msg.sender, coll);
// Signal to the fee collector that debt has been paid in full
feeCollector.closeDebt(msg.sender, _asset);

- In BorrowerOperations::_activePoolAddColl (also discussed in previous
item):
function _activePoolAddColl(

address _asset,
IActivePool _activePool,
uint256 _amount

) internal {
IERC20Upgradeable(_asset).safeTransferFrom(

msg.sender,
address(_activePool),
SafetyTransfer.decimalsCorrection(_asset, _amount)

); // Dedaub: reverse transfer and next call?
_activePool.receivedERC20(_asset, _amount);

}

- In StabilityPool::_sendGainsToDepositor, there are effects after a
transfer, but these seem safe: some of the effects are transfers (inside
the loop) over entirely different tokens, some others are just a subtraction
of collaterals, which should be fine if deferred. However, we recommend
reordering the transfers and totalColl.amounts adjustment, out of an
abundance of caution.
function _sendGainsToDepositor(

address _to,
address[] memory assets,
uint256[] memory amounts

) internal {
…
for (uint256 i = 0; i < assetsLen; ++i) {

…
IERC20Upgradeable(asset).safeTransferFrom(address(this), _to,

7

DEDAUB.COM

amount);
} // Dedaub: effects after call.
totalColl.amounts = _leftSubColls(totalColl, assets, amounts);

…
}

LOW SEVERITY:

ID Description STATUS

L1
PriceFeed::addOracle does not check if it is overwriting a
previous queued oracle

RESOLVED
(not applicable
as of e4fbfc30)

In PriceFeed::addOracle, the queuedOracles entry for the token is written without
checking whether it is zero. This is only a problem in case the controller makes a
mistake, but the presence of a deleteQueuedOracle function suggests that the right
behavior for a controller would be to delete a queued oracle if it’s no longer valid.
function addOracle(address _token, address _chainlinkOracle, bool _isEthIndexed)
external override isController {

AggregatorV3Interface newOracle = AggregatorV3Interface(_chainlinkOracle);
_validateFeedResponse(newOracle);
if (registeredOracles[_token].exists) {

uint256 timelockRelease = block.timestamp.add(_getOracleUpdateTimelock());
queuedOracles[_token] = OracleRecord(newOracle, timelockRelease, true,

true, _isEthIndexed);
} else {

registeredOracles[_token] = OracleRecord(newOracle, block.timestamp, true,
true, _isEthIndexed);

emit NewOracleRegistered(_token, _chainlinkOracle, _isEthIndexed);
}

}

8

DEDAUB.COM

function deleteQueuedOracle(address _token) external override isController {
delete queuedOracles[_token];

}

L2
The timelock for adding oracles can be circumvented by
deleting the previous oracle

RESOLVED
(not applicable
as of e4fbfc30)

On the same code as issue L1, in the PriceFeed contract, the controller can always
subvert the above timelock by just deleting the registered oracle.

function deleteOracle(address _token) external override isController {
delete registeredOracles[_token];

}

Thus, the timelock can only prevent accidents in the controller, and not provide
assurances of having a delay for review of changes to oracles.

L3
A series of liquidations can cause the zeroing of
totalStakes

ACKNOWLEDGED

The stake of a Vessel holding _asset as collateral is computed by the formula in
VesselManager::_computeNewStake :

stake =
_coll.mul(totalStakesSnapshot[_asset]).div(totalCollateralSnapshot[_asset]);

The stake is updated when the Vessel is adjusted and _coll is the new collateral
amount of the Vessel and totalStakesSnapshot, totalCollateralSnapshot the total
stakes and total collateral respectively right after the last liquidation.
A liquidation followed by a redistribution of the debt and collateral to the other Vessels
decreases the total stakes (the stake of the liquidated Vessel is just deleted and not
shared among the others) and the total collateral (if we ignore the fees) does not
change. Therefore the ratio in the above formula is constantly decreasing after each
liquidation followed by redistribution and each new Vessel will get a relatively smaller

9

DEDAUB.COM

stake. The finite precision of the arithmetic operations can lead to a zeroing of
totalStakes, if a series of liquidations of Vessels with high stakes occurs. If this
happens, the total stakes will be zero forever and each new vessel will be assigned a
zero stake.
If this happens many functionalities of the protocol are blocked i.e. the
VesselManager::redistributeDebtAndCollateral will revert every time, since the debt
and collateral to distribute are computed dividing by the (zero) totalStakes.
The probability of such a problem is higher in Gravita, compared to Liquity, because
Gravita allows multiple collateral assets, some of them, in principle, more volatile
compared to ETH.

L4
PriceFeed::fetchPrice could return arbitrarily stale prices,
if Chainlink Oracle’s response is not valid

RESOLVED
(e4fbfc30)

The protocol uses the PriceFeed::fetchPrice to get the price of a _token, whenever it
needs to. This function first calls the Chainlink oracle to get the price for this _token
and then checks the validity of the response. If it is valid, it stores the answer in
lastGoodPrice[_token] and also returns it to the caller. If the Chainlink response is not
valid, then the function returns the value stored in lastGoodPrice[_token]. The
problem is that this value could have been stored a long time ago and there is no
check about this in the contract. As an edge case, if the Chainlink oracle does not give
a valid answer, upon its first call for a _token, then the PriceFeed::fetchPrice function
will return a zero price. Liquity uses a secondary oracle, if the response of Chainlink is
not valid, and only if both oracles fail, the stored last good price is being used, but in
Gravita there is no secondary oracle.

L5
AdminContract::sanitizeParameters has no access
control

RESOLVED
(58a41195)

The function sets important collateral data (to default values) yet has no access
control, unlike, e.g., the almost-equivalent setAsDefault, which is onlyOwner.

10

https://github.com/liquity/dev/issues/310

DEDAUB.COM

Although there are many other safeguards that ensure that collateral is valid, we
recommend tightening the access control for sanitizeParameters as well.

function sanitizeParameters(address _collateral) external {
if (!collateralParams[_collateral].hasCollateralConfigured) {

_setAsDefault(_collateral);
}

}
function setAsDefault(address _collateral) external onlyOwner {

_setAsDefault(_collateral);
}

CENTRALIZATION ISSUES:

It is often desirable for DeFi protocols to assume no trust in a central authority, including
the protocol’s owner. Even if the owner is reputable, users are more likely to engage with
a protocol that guarantees no catastrophic failure even in the case the owner gets
hacked/compromised. We list issues of this kind below. (These issues should be
considered in the context of usage/deployment, as they are not uncommon. Several
high-profile, high-value protocols have significant centralization threats.)

ID Description STATUS

N1
Whitelisted contracts canmint arbitrarily large amounts
of debt tokens

INFO
(acknowledged)

The role of the whitelisted contracts is not completely clear to us. There is only one
related comment in DebtToken.sol :

// stores SC addresses that are allowed to mint/burn the token (AMO strategies, L2 suppliers)
mapping(address => bool) public whitelistedContracts;

11

DEDAUB.COM

These contracts can mint debt tokens without depositing any collateral calling
DebtToken::mintFromWhitelistedContract. This could be a serious problem if such a
contract was malicious. Also, even if these contracts work as expected, minting debt
tokens without providing any collateral could have a serious impact on the price of the
debt token.

N2 Protocol owners can set crucial parameters INFO
(acknowledged)

Key functionality is trusted to the owner of various contracts. Owners can set the kinds
of collateral accepted, the oracles that are used to price collateral, etc. Thus, protocol
owners should be trusted by users.

OTHER / ADVISORY ISSUES:

This section details issues that are not thought to directly affect the functionality of the
project, but we recommend considering them.

ID Description STATUS

A1 In struct Vessel (IVesselManager.sol), asset is
unnecessary

INFO

Field asset of struct Vessel is currently unused. Vessel records are currently only used
in a mapping that has the asset as the key, so there is no need to read the asset from
the Vessel data.

A2
In FeeCollector::_decreaseDebt no need to check for
refundable fees if the expiration time of the refunding is
block.timestamp

INFO

12

DEDAUB.COM

In the code below
if (mRecord.to < NOW) {

_closeExpiredOrLiquidatedFeeRecord(_borrower, _asset, mRecord.amount);

}

< can be replaced by <=, since when mRecord == NOW, there is nothing left for the user
to refund.

A3 Unused event INFO

The following event is declared in IAdminContract.sol but not used anywhere:

event MaxBorrowingFeeChanged(uint256 oldMaxBorrowingFee, uint256 newMaxBorrowingFee);

A4 Unused storage variables INFO

The storage mapping StabilityPool::pendingCollGains and code accessing it are
unnecessary since the information is never set to non-zero values.

// Mapping from user address => pending collaterals to claim still
// Must always be sorted by whitelist to keep leftSumColls functionality
mapping(address => Colls) pendingCollGains;
...
function getDepositorGains(address _depositor) public view
returns (address[] memory, uint256[] memory) {

…
// Add pending gains to the current gains
return (

collateralsFromNewGains,
_leftSumColls(

Colls(collateralsFromNewGains, amountsFromNewGains),
pendingCollGains[_depositor].tokens,
pendingCollGains[_depositor].amounts

)
);

}
...
function _sendGainsToDepositor(

13

DEDAUB.COM

address _to,
address[] memory assets,
uint256[] memory amounts

) internal {
...
// Reset pendingCollGains since those were all sent to the borrower
Colls memory tempPendingCollGains;
pendingCollGains[_to] = tempPendingCollGains;

}

Also, StabilityPool::controller is unused and never set:

IAdminContract public controller;

Finally, variables activePool, defaultPool in GravitaBase seem unused and not set (at
least for most subcontracts of GravitaBase).

IActivePool public activePool;
IDefaultPool internal defaultPool;

A5 TransferFrom is really just a transfer INFO

In StabilityPool::_sendGainsToDepositor, it is not clear why the transferFrom is not
merely a transfer.
function _sendGainsToDepositor(

address _to,
address[] memory assets,
uint256[] memory amounts

) internal {
…
for (uint256 i = 0; i < assetsLen; ++i) {

…
IERC20Upgradeable(asset).safeTransferFrom(address(this), _to,

amount);
}
…

}

14

DEDAUB.COM

A6 Tokens with more than 18 decimals are not supported INFO

Tokens with more than 18 decimals are not supported, based on the SafetyTransfer
library (outside the audit scope).

function decimalsCorrection(address _token, uint256 _amount)
internal
view
returns (uint256)

{
if (_token == address(0)) return _amount;
if (_amount == 0) return 0;

uint8 decimals = ERC20Decimals(_token).decimals();
if (decimals < 18) {

return _amount.div(10**(18 - decimals));
}

return _amount; // Dedaub: more than 18 not supported correctly!
}

We do not recommend trying to address this, as it may introduce other complexities for
very little practical benefit. Instead, we recommend just being aware of the limitation.

A7 No-op statement (consisting of a mere expression) INFO

In BorrowingOperations::openVessel, the following expression (used as a
statement!) is a no-op:

vars.debtTokenFee;

A8 Unused external function, not called as expected INFO

15

DEDAUB.COM

BorrowerOperations::moveLiquidatedAssetToVessel appears to not be used in the
protocol.

// Send collateral to a vessel. Called by only the Stability Pool.
function moveLiquidatedAssetToVessel(

address _asset,
uint256 _amountMoved,
address _borrower,
address _upperHint,
address _lowerHint

) external override {
_requireCallerIsStabilityPool();
_adjustVessel(_asset, _amountMoved, _borrower, 0, 0, false,

_upperHint, _lowerHint);
}

A9 Unnecessary isInitialized flags INFO

The following pattern over storage variable isInitialized appears in several
contracts but should be entirely unnecessary, due to the presence of the initializer

modifier.

bool public isInitialized;

function setAddresses(...) external initializer {
require(!isInitialized);
…
isInitialized = true;

}

Contracts with the pattern include FeeCollector, PriceFeed, ActivePool,
CollSurplusPool, DefaultPool, SortedVessels, StabilityPool, VesselManager,
VesselManagerOperations, CommunityIssuance, GRVTStaking.

A10 Anachronisms INFO

16

DEDAUB.COM

The codebase exhibits some old code patterns (which we do not recommend fixing,
since they directly mimick the Liquity trusted code):

● The use of assert for condition checking (instead of require/if->revert).
(Some of the asserts have been replaced, but not all.)

● The use of SafeMath instead of relying on Solidity 0.8.* checks.

A11 Unnecessary and error-prone use of this.* INFO

Some same-contract function calls are made with the pattern this.func(), which
causes a new internal transaction and changes the msg.sender. This should be
avoided for clarity and (gas) performance.
In VesselManager:

function isVesselActive(address _asset, address _borrower) public view override
returns (bool) {

return this.getVesselStatus(_asset, _borrower) == uint256(Status.active);
}

In PriceFeed (and also note the unusual convention of 0 = ETH):

function _calcEthPrice(uint256 ethAmount) internal returns (uint256) {
uint256 ethPrice = this.fetchPrice(address(0));
// Dedaub: Also, why the convention that 0 = ETH?
return ethPrice.mul(ethAmount).div(1 ether);

}
…
function _fetchNativeWstETHPrice() internal returns (uint256 price) {

uint256 wstEthToStEthValue = _getWstETH_StETHValue();
OracleRecord storage stEth_UsdOracle = registeredOracles[stethToken];
price = stEth_UsdOracle.exists ? this.fetchPrice(stethToken) :

_calcEthPrice(wstEthToStEthValue);
_storePrice(wstethToken, price);

}

17

DEDAUB.COM

A12

Compatibility of PriceFeed::_fetchPrevFeedResponse,
_isValidResponse with future versions of the Chainlink
Aggregator

INFO

The roundId returned by the Chainlink AggregatorProxy contract is a uint80.The 16
most important bits keep the phaseId (incremented every time the underlying
aggregator is updated) and the other 64 bits keep the roundId of the aggregator. As
long as the underlying aggregator is the same, the roundId returned by the proxy will
increase by one in each new round, but in an update of the aggregator contract the
proxy roundId will increment not by 1, since the phaseId will also change. In this case
the previous round is not current_roundId-1 and _fetchPrevFeedResponse will not
return the price data from the previous round (which was a round of the previous
aggregator). We mention this issue, although the probability that the protocol fetches
a price at the time of an update of a Chainlink oracle is relatively small and each round
lasts a fewminutes to an hour.
PriceFeed::_isValidResponse does all the validity checks necessary for the current
Chainlink Aggregator version. Chaninlink’s AggregatorProxy::latestRoundData returns
also two extra values uint256 startedAt, uint80 answeredInRound, which, for the
current version, do not hold extra information i.e. answeredInRound==roundId, but in
past and possible future versions they could be used for some extra validity checks i.e.
answeredInRound>=roundId.

A13 Unnecessary code INFO

In BorrowerOperations:

function _requireNonZeroAdjustment(
uint256 _collWithdrawal,
uint256 _debtTokenChange,
uint256 _assetSent

) internal view {
require(

msg.value != 0 || _collWithdrawal != 0 || _debtTokenChange != 0 ||

18

https://github.com/smartcontractkit/libocr/blob/master/contract/OffchainAggregator.sol

DEDAUB.COM

_assetSent != 0, // Dedaub: `msg.value != 0` not possible
"BorrowerOps: There must be either a collateral change or a debt

change"
);

}

the condition msg.value != 0 is not possible, as ensured in the single place where this
function is called (_adjustVessel). The condition should be kept if the function is to be
usable elsewhere in the future.

Similarly, in VesselManager, the condition marked with a comment below seems
unnecessary, given that the arithmetic is compiler-checked.

function decreaseVesselDebt(
address _asset,
address _borrower,
uint256 _debtDecrease

) external override onlyBorrowerOperations returns (uint256) {
uint256 oldDebt = Vessels[_borrower][_asset].debt;
if (_debtDecrease == 0) {

return oldDebt; // no changes
}
uint256 paybackFraction = (_debtDecrease * 1 ether) / oldDebt;
uint256 newDebt = oldDebt - _debtDecrease;
Vessels[_borrower][_asset].debt = newDebt;
if (paybackFraction > 0) {

if (paybackFraction > 1 ether) {
// Dedaub:Impossible. The "-" would have reverted, three lines above

paybackFraction = 1 ether;
}
feeCollector.decreaseDebt(_borrower, _asset,

paybackFraction);
}
return newDebt;

}

19

DEDAUB.COM

A14 Unclear ownable policy INFO

Some contracts are defined to be Ownable (using the OZ libraries), yet do not use this
capability (beyond initialization). These include:

● StabilityPool initializes Ownable, relinquishes ownership, but never checks
ownership in setAddresses, or elsewhere.

function setAddresses(
address _borrowerOperationsAddress,
address _vesselManagerAddress,
address _activePoolAddress,
address _debtTokenAddress,
address _sortedVesselsAddress,
address _communityIssuanceAddress,
address _adminContractAddress

) external initializer override {
…

__Ownable_init();
…

renounceOwnership();
// Dedaub: The function was onlyOwner in Liquity, here there's
// no point of Ownable

}

● VesselManagerOperations inherits and initializes ownable functionality but is it
used?

function setAddresses(
address _vesselManagerAddress,
address _sortedVesselsAddress,
address _stabilityPoolAddress,
address _collSurplusPoolAddress,
address _debtTokenAddress,
address _adminContractAddress

) external initializer {
…

__Ownable_init(); // YS:! why?

20

DEDAUB.COM

}

A15 No explicit check in BorrowerOperations::openVessel that
the collateral deposited by the user is approved

INFO

If a user attempts to open a Vessel with a collateral asset not approved by the owner,
the transaction will fail, because there will be no price oracle registered for this asset.
Therefore it is checked if the user deposits an approved collateral asset, but only
indirectly. It would be better if there was an explicit check.

A16 AdminContract::addNewCollateral only partially initializes
the collateralParams structure

INFO

We cannot find a specific problemwith the current only partial initialization, since even
if the owner just adds a new _collateral and does not set all the fields of
collateralParams[_collateral], upon opening a Vessel the protocol sets the default
values for these. But, in general it is not a good practice to leave uninitialized variables
and it would be better if in addnewCollateral the owner also set the default values for
the remaining collateralParams elements.

A17 Unused internal functions INFO

In StabilityPool, the following two functions are unused.

function _requireUserHasVessel(address _depositor) internal view {
address[] memory assets = adminContract.getValidCollateral();
uint256 assetsLen = assets.length;
for (uint256 i; i < assetsLen; ++i) {

if (vesselManager.getVesselStatus(assets[i], _depositor) == 1) {
return;

}
}
revert("StabilityPool: caller must have an active vessel to withdraw

AssetGain to");

21

DEDAUB.COM

}

function _requireUserHasAssetGain(address _depositor) internal view {
(address[] memory assets, uint256[] memory amounts) =

getDepositorGains(_depositor);
for (uint256 i = 0; i < assets.length; ++i) {

if (amounts[i] > 0) {
return;

}
}
revert("StabilityPool: caller must have non-zero gains");

}

A18 Misspellings/content mistakes in names or comments INFO

This issue collects several items, all superficial, but easy to fix.
● AdminContract:

uint256 public constant PERCENT_DIVISOR_DEFAULT = 100;
// dividing by 100 yields 0.5%
// Dedaub: No, it yields 1%

● AdminContract:

function setAsDefaultWithRemptionBlock(// Dedaub: spelling

● AdminContract:

struct CollateralParams {
…

uint256 redemptionBlock; // Dedaub: misnamed, it’s in seconds
}

(We advise special caution, since the field is set in two ways, so external callers
may be confused by the name and pass a block number, whereas the
calculation is in terms of seconds.)

● StabilityPool:

22

DEDAUB.COM

// Internal function, used to calculcate ...

● PriceFeed:

* - If price decreased, the percentage deviation is in relation to the the

● FeeCollector:

function _createFeeRecord(
address _borrower,
address _asset,
uint256 _feeAmount,
FeeRecord storage _sRecord

) internal {
uint256 from = block.timestamp + MIN_FEE_DAYS * 24 * 60 * 60;

// Dedaub: `1 days` is the best way to write this, as done
// elsewhere in the code

A19 Opportunities for gas optimization INFO

Gas savings were not a focus of the audit, but there are some clear instances of repeat
work or missed opportunities for immutable fields.

● StabilityPool:

function receivedERC20(address _asset, uint256 _amount) external override {
…

totalColl.amounts[collateralIndex] += _amount;
uint256 newAssetBalance = totalColl.amounts[collateralIndex];

…
}

The two highlighted lines (likely) perform two SLOADs and one SSTORE. Using an
intermediate temporary variable for the sumwill save an SLOAD.

● DebtToken: the following variable is only set in constructor, could be declared
immutable.

address public timelockAddress;

23

DEDAUB.COM

A20 Magic constants INFO

Our recommendation is for all numeric constants to be given a symbolic name at the
top of the contract, instead of being interspersed in the code.

● VesselManagerOperations::getRedemptionHints:

collLot = collLot * REDEMPTION_SOFTENING_PARAM / 1000;

● AdminContract::setAsDefaultWithRedemptionBlock:

if (blockInDays > 14) { ...

● BorrowerOperations::openVessel:

contractsCache.vesselManager.setVesselStatus(vars.asset, msg.sender, 1);
// Dedaub: 1 stands for "active”, but is obscure

A21 I-naming inconsistent INFO

Contract IDebtToken is not really an “interface”, since it contains full ERC20
implementation functionality.

A22 Maximum allowed deviation between two consecutive
oracle prices seems to be too high

INFO

In PriceFeed.sol there is a MAX_PRICE_DEVIATION_FROM_PREVIOUS_ROUND constant set
to 5e17 i.e. 50%. If the percentage deviation of two consecutive Chainlink responses is
greater than this constant, the protocol rejects the new price as invalid. But the value
of this constant seems to be too high. Moreover, we think it would be better if the
protocol used a different MAX_PRICE_DEVIATION_FROM_PREVIOUS_ROUND for each
collateral asset considering also the volatility of the asset.

A23 Compiler bugs INFO

24

DEDAUB.COM

The code has the compile pragma ^0.8.10. For deployment, we recommend no floating
pragmas, i.e., a fixed version, for predictability. Solc version 0.8.10, specifically, has
some known bugs, which we do not believe to affect the correctness of the contracts.

25

https://github.com/ethereum/solidity/blob/2ca349c69aefe8c7033764f2e49c91fe99ccaed5/docs/bugs_by_version.json#L1709

DEDAUB.COM

DISCLAIMER

The audited contracts have been analyzed using automated techniques and extensive
human inspection in accordance with state-of-the-art practices as of the date of this
report. The audit makes no statements or warranties on the security of the code. On its
own, it cannot be considered a sufficient assessment of the correctness of the contract.
While we have conducted an analysis to the best of our ability, it is our recommendation
for high-value contracts to commission several independent audits, a public bug bounty
program, as well as continuous security auditing and monitoring through Dedaub
Watchdog.

ABOUT DEDAUB

Dedaub offers significant security expertise combined with cutting-edge program
analysis technology to secure some of the most prominent protocols in DeFi. The
founders, as well as many of Dedaub's auditors, have a strong academic research
background together with a real-world hacker mentality to secure code. Protocol
blockchain developers hire us for our foundational analysis tools and deep expertise in
program analysis, reverse engineering, DeFi exploits, cryptography and financial
mathematics.

26

